

SYS TEC electronic GmbH - System House for Distributed Automation Solutions

SYS TEC-specific
Extensions for

OpenPCS / IEC 61131-3

User Manual
Version 4.0

Edition July 2011

Document no.: L-1054d_04

SYSTEC electronic GmbH August-Bebel-Str. 29 D-07973 Greiz
Phone: +49 (3661) 6279-0 Fax: +49 (3661) 6279-99

Web: http://www.systec-electronic.com Email: info@systec-electronic.com

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 2

Status/Changes

Status: Released

Date/Version Section Change By

2004/11/17
1.0

all Creation R. Sieber

2007/03/02
2.0

3 Section 3 new, therefore all the following
sections have been shifted

R. Sieber

2007/07/18
3.0

1.4 Section 1.4 new R. Sieber

2009/02/10
3.1

5.4 Description of return value rectified R. Sieber

2011/07/15
4.0

2.2.6, 2.2.7,
3.12, 3.13,
4.5, 5.8, 5.9

Description of all FB/FUN with Parameter
of Type POINTER new

R. Sieber

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 3

Product names used in this manual which are also registered trademarks have not been marked extra.
The missing © mark does not imply that the trade name is unregistered. Nor is it possible to determine
the existence of any patents or protection of inventions on the basis of the names used.

The information in this manual has been carefully checked and is believed to be accurate. However, it
is expressly stated that SYS TEC electronic GmbH does not assume warranty or legal responsibility or
any liability for consequential damages which result from the use or contents of this user manual. The
information contained in this manual can be changed without prior notice. Therefore, SYS TEC
electronic GmbH shall not accept any obligation.

Furthermore, it is expressly stated that SYS TEC electronic GmbH does not assume warranty or legal
responsibility or any liability for consequential damages which result from incorrect use of the hard or
software. The layout or design of the hardware can also be changed without prior notice. Therefore,
SYS TEC electronic GmbH shall not accept any obligation.

© Copyright 2011 SYS TEC electronic GmbH, D-07973 Greiz.
All rights reserved. No part of this manual may be reproduced, processed, copied or distributed in any
way without the express prior written permission of SYS TEC electronic GmbH.

Inform yourselves:

Contact Direct Your local distributor

Address: SYS TEC electronic GmbH
August-Bebel-Str. 29
D-07973 Greiz
GERMANY

Ordering
Information:

+49 (0) 36 61 / 62 79-0
info@systec-electronic.com

Technical Support: +49 (0) 36 61 / 62 79-0
support@systec-electronic.com

Fax: +49 (0) 36 61 / 6 79 99

Web Site: http://www.systec-electronic.com

Please find a list of our
distributors under:

http://www.systec-
electronic.com/distributors

4th Edition July 2011

mailto:info@systec-electronic.com�
mailto:support@systec-electronic.com�
http://www.systec-electronic.com/�

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 4

Table of Contents

1 Event Tasks..7
1.1 Application of Event Tasks .. 7
1.2 Creation and Configuration of Event Tasks... 7
1.3 Function Block ETRC... 8
1.4 Function Block PTRC... 11

2 String Processing... 13
2.1 Standard String Functions according to IEC 61131-3 ... 13

2.1.1 Function LEN... 13
2.1.2 Function LEFT... 13
2.1.3 Function RIGHT .. 14
2.1.4 Function MID... 14
2.1.5 Function CONCAT .. 15
2.1.6 Function INSERT .. 15
2.1.7 Function DELETE.. 16
2.1.8 Function REPLACE... 16
2.1.9 Function FIND ... 17

2.2 SYSTEC-Specific String Functions and Function Blocks .. 17
2.2.1 Function Block GETSTRINFO .. 17
2.2.2 Function CHR.. 18
2.2.3 Function ASC .. 19
2.2.4 Function STR .. 19
2.2.5 Function VAL... 20
2.2.6 Function BIN_TO_STR ... 20
2.2.7 Function STR_TO_BIN ... 22

3 Data Communication via UDP... 25
3.1 Data Communication Application via UDP .. 25
3.2 Definitions for UDP Blocks... 25
3.3 Function Block LAN_GET_HOST_CONFIG.. 26
3.4 Function LAN_ASCII_TO_INET .. 27
3.5 Function LAN_INET_TO_ASCII .. 27
3.6 Function LAN_GET_HOST_BY_NAME .. 28
3.7 Function LAN_GET_HOST_BY_ADDR... 29
3.8 Function Block LAN_UDP_CREATE_SOCKET .. 29
3.9 Function Block LAN_UDP_CLOSE_SOCKET .. 31
3.10 Function Block LAN_UDP_RECVFROM_STR.. 32
3.11 Function Block LAN_UDP_SENDTO_STR ... 33
3.12 Function Block LAN_UDP_RECVFROM_BIN... 34
3.13 Function Block LAN_UDP_SENDTO_BIN... 36
3.14 Sample Program for applying UDP Function Blocks ... 37

4 Securing Process Data in the Nonvolatile Storage... 41
4.1 Application of Nonvolatile Storage for Process Data... 41
4.2 Function Block NVDATA_BIT .. 41
4.3 Function Block NVDATA_INT.. 44
4.4 Function Block NVDATA_STR .. 47
4.5 Function Block NVDATA_BIN.. 49

5 Access to Serial Interface (SIO) .. 52
5.1 Application of the Serial Interface .. 52
5.2 Function Block SIO_INIT ... 52
5.3 Function Block SIO_STATE .. 55
5.4 Function Block SIO_READ_CHR .. 58
5.5 Function Block SIO_WRITE_CHR... 59
5.6 Function Block SIO_READ_STR... 61
5.7 Function Block SIO_WRITE_STR ... 63
5.8 Function Block SIO_READ_BIN .. 68
5.9 Function Block SIO_WRITE_BIN .. 70

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 5

6 Access to Hardware Counter .. 75
6.1 Application of Hardware Counters ... 75
6.2 Function Block CNT_FUD ... 75

7 Access to Real Time Clock (RTC)... 80
7.1 Application of the Real Time Clock (RTC)... 80
7.2 Function Block DT_CLOCK ... 80
7.3 Function Block DT_ABS_TO_REL .. 83
7.4 Function Block DT_REL_TO_ABS .. 84

8 Access to the Pulse Generator (PWM/PTO)... 86
8.1 Application of the Pulse Generator (PTO/PWM) ... 86
8.2 Function Block PTO_PWM .. 87
8.3 Function Block PTO_TAB.. 93

9 Processing of Process Data.. 98
9.1 Application of the PID Controller.. 98
9.2 Function Block PID1 .. 100

10 Index .. 105

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 6

List of Tables

Table 1 Event Codes of the Function Block ETRC ... 9
Table 2 Error Codes of the Function Block ETRC... 9
Table 3: Start mode of PTRC function block ... 11
Table 4: Error codes of the PTRC function block.. 11
Table 5: Format Specifications for BIN_TO_STR ... 21
Table 6: Format specifications for STR_TO_BIN.. 23
Table 7: Error-Codes of Function STR_TO_BIN... 23
Table 8: Error codes of the function blocks LAN_Xxx... 25
Table 9 Call Modes for the Function Block NVDATA_BIT .. 42
Table 10 Error Codes of the Function Blocks NVDATA_Xxx.. 42
Table 11 Call Mode for the Function Block NVDATA_INT.. 45
Table 12 Call Mode for the Function Block NVDATA_STR .. 47
Table 13 Call Mode for the Function Block NVDATA_BIN.. 50
Table 14 Error Codes of the Function Block SIO_INIT ... 53
Table 15 Error Codes of the Function Block SIO_STAT... 56
Table 16 Error Codes of the Function Block SIO_READ_CHR .. 58
Table 17 Error Codes of the Function Block SIO_WRITE_CHR... 60
Table 18 Error Codes of the Function Block SIO_READ_STR... 62
Table 19 Error Codes of the Function Block SIO_WRITE_STR ... 64
Table 20 Error Codes of the Function Block SIO_READ_BIN.. 69
Table 21 Error Codes of the Function Block SIO_WRITE_BIN .. 71
Table 22 Error Codes of the Function Block CNT_FUD ... 76
Table 23 Error Codes of the Function Block DT_Xxx ... 81
Table 24 Error Codes of the Function Block PTO_PWM .. 88
Table 25 Error Codes of the Function Block PTO_TAB.. 94
Table 26 Error Codes of the Function Block PID1 .. 101

List of Illustrations

Figure 1: Dialog box "Processing Task Properties"... 8
Figure 2: Signal run of the outputs of an incrementing counter .. 78
Figure 3: Runtime performance of the pulse generator in PTO mode .. 86
Figure 4: Runtime performance of the pulse generator in PWM mode... 86
Figure 5: Time diagram for sample program "MotorCtl".. 95
Figure 6: Principle of a control loop... 98
Figure 7: Composition of the controlled system for sample program "PidTest".................................. 103
Figure 8: "PidTest" - Change of the actual value during a command variable jump (set value) from 1V

to 6V ... 104

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 7

1 Event Tasks

1.1 Application of Event Tasks

PLC programs which are only executed in case of a certain event (aka "interrupts") are called event
tasks. For example, starts and stops of a PLC or a run-time error during program execution (division
by zero or access to data field elements outside the defined field boundaries).

The start task is responsible for the one-time configuration and initialization of the control or system
components. This includes, for example, the parameterization of decentralized field nodes at the start
of program execution (e.g. parameterization of CANopen field bus devices via corresponding SDO
accesses to the objects’ device directories). Additionally, the stop task enables defined deactivation of
the field nodes at the end of PLC program execution. In case of an error it is possible to set the local
PLC outputs as well as the field node outputs to an uncritical state via the error task.

Start Task: Execution of the start task occurs during the stop to run state change of the PLC. This

can be triggered on the hardware-side by switching the RUN/STOP switch to RUN
and on the software-side by pressing a start button in the OpenPCS programming
environment. The actual main PLC program is not executed until the start task has
been fully executed.

Stop Task: Execution of the stop task occurs during the run to stop state change of the PLC. This

can be triggered on the hardware-side by switching the RUN/STOP switch to STOP
and on the software-side by pressing the stop button in the OpenPCS programming
environment. The stop task is executed after termination of the actual main PLC
program. Only then is the PLC in stop state.

Error Task: Error task execution is coupled to the occurrence of various error states (e.g. division

by zero) which can occur during PLC program execution. Similar to the stop task,
error task execution occurs after termination of the actual main PLC program. Only
then is the PLC is in stop state.

1.2 Creation and Configuration of Event Tasks

In OpenPCS event tasks are only PLC programs with specific properties. Therefore, an event task is
only created similar to "normal" programs via the menu item "File New Program". The entry
"interrupt" has to be selected in the select field "task type" during assignment of the task to the
resource (see Figure 1).

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 8

Figure 1: Dialog box "Processing Task Properties"

As standard, an event task is executed once when the allocated event occurs. The function block
ETRC, described in section 1.3, enables an expansion of program execution to numerous successive
cycles.

1.3 Function Block ETRC

As standard, an event task is executed once when the allocated event occurs. However, it may be
necessary, especially when using decentralized field nodes, to expand the execution of an event task
to numerous successive cycles. For example, the SDO accesses necessary for parameterization of
CANopen field bus devices require the continuous calling of the SDO block for several PLC program
cycles until successful completion.

Via the firmware function block ETRC (Event Task Run Control), an event task can expand its own
execution by a further program cycle. Information available at the block’s outputs about the previous
runtime and the number of the executed cycles can be used as a stop criterion to avoid getting caught
in an infinite loop during event task execution in case of an error.

Prototype of the Function Block

 +----------+
 | ETRC |
 | |
 BOOL ---|IN Q|--- BOOL
 | |
 | EVC|--- USINT
 | ERT|--- TIME
 | CCV|--- UDINT
 | |
 | ERROR|--- USINT
 | |
 +----------+

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 9

Definition of Operands

IN: TRUE: The event task requests execution for a further cycle.

FALSE: The event task intends to terminate its execution, or only asks for current
status information without simultaneously requesting expansion for a further cycle.

Q: TRUE: The event task is processed by the runtime system for a further cycle.

FALSE: Execution of the event task is terminated after the current cycle.

EVC: The event code describes the internal system reason for the event task call. The

event codes are defined in Table 1.

ERT: The elapsed run time states the event task time which has already been executed.

CCV: The cycle counter value defines the number of event task cycles which have

already been executed.

ERROR: The error code provides information about the execution result of the function

block. Possible error codes are defined in Table 2.

Table 1 Event Codes of the Function Block ETRC

Event Code Event for the Task Call

0 Called task is unknown

1 PLC cold start executed

2 PLC warm start executed

3 PLC hot start executed

4 Single cycle start executed

5 PLC has been switched to STOP via the RUN/STOP switch

6 PLC has been switched to STOP on the software-side

7 PLC changes to STOP after executing a single cycle

8 General error during PLC program execution (e.g. invalid program code)

9 Division by zero

10 Access to an invalid data field index (ARRAY)

11 Error during the execution of a function block

Table 2 Error Codes of the Function Block ETRC

Error Code Definition

0 The function block has been successfully executed

1 The function block has been called by an invalid event task. Therefore, execution of
the function block is not possible.

Description

As standard an event task is only called for one single cycle. If the event task requires further cycles
for its execution, it has to register this via the function block ETRC. The function block ETRC
simultaneously states the reason for the event task call at the EVC output (see Table 1). Additionally,

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 10

output ERT (Elapsed Run Time) and output CCV (Cycle Counter Value) state the elapsed event task
runtime in milliseconds and the number of cycles during which the event task has already been
executed respectively. Via the ERT and CCV information the event task can decide whether to
execute a further cycle or not. Possible errors during function block execution are displayed at output
ERROR and described in Table 2.

In case a runtime error such as Division by Zero occurred, the user can restart the nominal PLC
program execution by using the function block PTRC (Program Task Run Control) described in
Section 1.4.

The following sample program shows a simple start task which is processed for a total of 4 cycles. In
order to achieve this, the task requests execution of a further cycle 3 times by calling the function
block ETRC.

Sample Program

PROGRAM Startup

VAR
 Out8_15 AT %QB1.0 : BYTE;
 RunState : BOOL;
 EventCode : USINT;
 RunTime : TIME;
 CycleCounter : UDINT;
 Error : USINT;

 FB_ETRC : ETRC;
END_VAR

(* get the current state only, but don't request execution time for *)
(* the next cycle yet *)
CAL FB_ETRC (
 IN := FALSE
 |
 RunState := Q,
 EventCode := EVC,
 RunTime := ERT,
 CycleCounter := CCV,
 Error := ERROR)

LD CycleCounter
UDINT_TO_BYTE
ST Out8_15

(* for 1.-3. cycle request execution time for the next cycle *)
LD CycleCounter
LE 3
CALC FB_ETRC (IN := TRUE)

RET

END_PROGRAM

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 11

1.4 Function Block PTRC

The PTRC (Program Task Run Control) function block provides methods to stop and restart the
program execution from within the PLC program.

Prototype of the Function block

 +------------+
 | PTRC |
 | |
 USINT ---|MODE ERROR|--- USINT
 | |
 +------------+

Definition of Operand

MODE: Command to be executed, start mode of function block, see Table 3

ERROR: The error code states information about the execution result of the function block.

Possible error codes are defined in Table 4.

Table 3: Start mode of PTRC function block

Start mode Meaning

0 Stop execution of PLC program

1 Start execution of PLC program; Coldstart

2 Start execution of PLC program; Warmstart

3 Start execution of PLC program; Hotstart

Table 4: Error codes of the PTRC function block

Error code Meaning

0 The function block has been successfully executed

4 Invalid mode (MODE) passed when calling the function block

Description

Using the PTRC function block it is possible to stop or restart the execution of a PLC program from
within the PLC program and enable an automatic restart in case a runtime error (i.e. division by zero)
occurred and thus, allows for a continuous operation without user-interaction. Normally this function
block is called from within an Error Task (see also Section 1.1). The supported modes are listed in
Table 3. Possible errors during function block execution are displayed at output ERROR and
described in Table 4.

The following example shows the application of the PTRC function block within an user-specific Error
Task (here the program is called "Resume" as used in Section 1.2).

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 12

Sample Program

PROGRAM Resume

VAR CONSTANT
 PTRC_MODE_STOP : USINT := 0;
 PTRC_MODE_COLDSTART : USINT := 1;
 PTRC_MODE_WARMSTART : USINT := 2;
 PTRC_MODE_HOTSTART : USINT := 3;
END_VAR

VAR
 FB_PTRC : PTRC;
 usiError : USINT;
END_VAR

FB_PTRC (MODE := PTRC_MODE_COLDSTART | usiError := ERROR);

RETURN;

END_PROGRAM

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 13

2 String Processing

2.1 Standard String Functions according to IEC 61131-3

The string functions listed below are standard functions according to IEC 61131-3 and are described in
detail in the OpenPCS online help. This list provides an overview of all the string functions available on
SYSTEC controls.

2.1.1 Function LEN

The function LEN determines the length of a character string.

 +---------------+
 | LEN |
 | |
 STRING ---|IN OUT|--- INT
 | |
 +---------------+

Description

This function determines the length of the character string IN.

Example

A := LEN('ABCDEF'); (* Result: A := 6 *)

2.1.2 Function LEFT

The function LEFT determines the left part of a character string.

 +---------------+
 | LEFT |
 | |
 STRING ---|IN OUT|--- STRING
 ANY_INT ---|L |
 | |
 +---------------+

Description

This function determines the left part with the length L of the character string IN.

Sample Program

A := LEFT(IN:='ABCDEF', L:=3); (* Result: A := 'ABC' *)

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 14

2.1.3 Function RIGHT

The function RIGHT determines the right part of a character string.

 +---------------+
 | RIGHT |
 | |
 STRING ---|IN OUT|--- STRING
 ANY_INT ---|L |
 | |
 +---------------+

Description

This function determines the right part with the length L of the character string IN.

Sample Program

A := RIGHT(IN:='ABCDEF', L:=3); (* Result: A := 'DEF' *)

2.1.4 Function MID

The function MID determines the mid part of a character string.

 +---------------+
 | MID |
 | |
 STRING ---|IN OUT|--- STRING
 ANY_INT ---|L |
 ANY_INT ---|P |
 | |
 +---------------+

Description

This function determines the mid part with the length L of the character string IN, starting at position P.

Sample Program

A := MID(IN:='ABCDEF', L:=3, P:=2); (* Result: A := 'BCD' *)

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 15

2.1.5 Function CONCAT

The function CONCAT concatenates character strings.

 +---------------+
 | CONCAT |
 | |
 STRING ---|IN1 OUT|--- STRING
 STRING ---|IN2 |
 | |
 +---------------+

Description

This function determines the total character string concatenated from character strings IN1 and IN2.

Sample Program

A := CONCAT(IN1:='ABC', IN2:='xyz'); (* Result: A := 'ABCxyz' *)

2.1.6 Function INSERT

The function INSERT inserts a character string into another character string.

 +---------------+
 | INSERT |
 | |
 STRING ---|IN1 OUT|--- STRING
 STRING ---|IN2 |
 ANY_INT ---|P |
 | |
 +---------------+

Description

This function inserts character string IN2 into character string IN1 after position P.

Sample Program

A := INSERT(IN1:='ABC', IN2:='xyz', P:=2); (* Result: A := 'ABxyzC' *)

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 16

2.1.7 Function DELETE

The function DELETE deletes characters from a character string.

 +---------------+
 | DELETE |
 | |
 STRING ---|IN OUT|--- STRING
 ANY_INT ---|L |
 ANY_INT ---|P |
 | |
 +---------------+

Description

This function deletes L characters from character string IN, starting at position P.

Sample Program

A := DELETE(IN:='ABCDEF', L:=3, P:=2); (* Result: A := 'AEF' *)

2.1.8 Function REPLACE

The function REPLACE replaces parts of a character string.

 +---------------+
 | REPLACE |
 | |
 STRING ---|IN1 OUT|--- STRING
 STRING ---|IN2 |
 ANY_INT ---|L |
 ANY_INT ---|P |
 | |
 +---------------+

Description

This function replaces L characters of character string IN1 with character string IN2, starting at position
P.

Sample Program

A := REPLACE(IN1:='ABCDEF', IN2:='z', (* Result: A := 'AzEF' *)
 L:=3, P:=2);

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 17

2.1.9 Function FIND

The function FIND finds a character string.

 +---------------+
 | FIND |
 | |
 STRING ---|IN1 OUT|--- INT
 STRING ---|IN2 |
 | |
 +---------------+

Description

This function determines the start position for the first appearance of character string IN2 in character
string IN1. If character string IN2 is not contained in character string IN1, the function results in the
value 0.

Sample Program

A := FIND(IN1:='ABCBCF', IN2:='BC'); (* Result: A := 2 *)

2.2 SYSTEC-Specific String Functions and Function Blocks

2.2.1 Function Block GETSTRINFO

The function block GETSTRINFO retrieves specific string information.

Prototype of the Function Block

 +----------------+
 | GETSTRINFO |
 | |
 STRING ---|ISTR--------ISTR|--- STRING
 | |
 | SIZE|--- INT
 | USED|--- INT
 | FREE|--- INT
 | |
 +----------------+

Definition of Operands

ISTR String whose properties are to be determined

SIZE Maximum string length (internal size of the available buffer for this string variable)

USED Occupied string length (same as IEC 61131-3 standard function LEN, see section

2.1.1)

FREE Unoccupied/Unused string length (same as SIZE - USED)

Description

This function block determines the size of the available internal buffer of a specified string (maximum
string length) as well as the occupied and unoccupied string length. This block is especially important

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 18

in connection with other function blocks which are used to read out or receive character strings, e.g.
NVDATA_STR (see section 4.4), SIO_READ_STR (see section 5.6) or CAN_SDO_READ_STR.

Sample Program

VAR
 strText : STRING(16) := 'ABCDEFGHIJ';
 iStrSize : INT;
 iStrUsed : INT;
 iStrFree : INT;
 FB_GetStrInfo : GETSTRINFO;
END_VAR

CAL FB_GetStrInfo (
 ISTR := strText
 |
 iStrSize := SIZE, (* iStrSize := 16 *)
 iStrUsed := USED, (* iStrUsed := 10 *)
 iStrFree := FREE) (* iStrFree := 6 *)

...

RET

2.2.2 Function CHR

The function CHR changes a numerical character code into the respective ASCII character.

Prototype of the Function

 +---------------+
 | CHR |
 | |
 USINT ---|CHRCODE CHRSTR|--- STRING
 | |
 +---------------+

Definition of Operands

CHRCODE Numerical character code to be changed into an ASCII character

CHRSTR String with ASCII character which corresponds to the numerical character code

Description

This function returns a string to output CHRSTR whose only character corresponds to the character
code passed at input CHRCODE.

Sample Program

CHR(16#41) (* Result: 'A' *)
CHR(97) (* Result: 'a' *)
CHR(60) (* Result: '<' *)
CHR(36) (* Result: '$' *)

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 19

2.2.3 Function ASC

The function ASC changes an ASCII character into the corresponding numerical character code.

Prototype of the Function

 +---------------+
 | ASC |
 | |
 STRING ---|CHRSTR CHRCODE|--- USINT
 | |
 +---------------+

Definition of Operands

CHRSTR String whose first character is used to determine the numerical character code

CHRCODE Numerical character code of the first ASCII character in the string

Description

This function returns the numerical character code of the first character of the string passed at input
CHRSTR to output CHRCODE.

Sample Program

ASC('A') (* Result: 65 / 16#41 *)
ASC('a') (* Result: 97 / 16#61 *)
ASC('ABC') (* Result: 65 / 16#41 *)
ASC(' 123') (* Result: 32 / 16#20 *)

2.2.4 Function STR

The function STR changes a REAL value into a corresponding string.

Prototype of the Function

 +---------------+
 | STR |
 | |
 REAL ---|VALNUM VALSTR|--- STRING
 | |
 +---------------+

Definition of Operands

VALNUM Numerical REAL value to be changed into a string

VALSTR String with a character string which corresponds to the numerical REAL value

Description

This function changes the numerical REAL value passed at input VALNUM into a corresponding string
and returns it to output VALSTR. During conversion, a leading space is always reserved for the sign.
No trailing zeros are given; the decimal point is also dropped for integers.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 20

Sample Program

STR(123) (* Result: ' 123' *)
STR(123.45) (* Result: ' 123.45' *)
STR(-123.45) (* Result: '-123.45' *)
STR(98.7654) (* Result: ' 98.7654' *)

2.2.5 Function VAL

The function VAL changes a string into a corresponding REAL value.

Prototype of the Function

 +---------------+
 | VAL |
 | |
 STRING ---|VALSTR VALNUM|--- REAL
 | |
 +---------------+

Definition of Operands

VALSTR String whose character string is to be changed into a numerical REAL value

VALNUM Numerical REAL value which corresponds to the passed character string

Description

This function changes the string passed at input VALSTR into a corresponding numerical REAL value
and returns it to output VALNUM.

Sample Program

VAL('123') (* Result: 123 *)
VAL('123.45') (* Result: 123.45 *)
VAL('-123.45') (* Result: -123.45 *)
VAL('98.7654') (* Result: 98.7654 *)

2.2.6 Function BIN_TO_STR

The function BIN_TO_STR converts a numerical value into an appropriate string.

Prototype of the function

 +----------------------+
 | BIN_TO_STR |
 | |
 POINTER ---|PTR_DATA_IN DATA_OUT|--- STRING
 STRING ---|FORMAT |
 | |
 +----------------------+

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 21

Definition of Operands

PTR_DATA_IN Address of an object, whose value has to convert into a string.

FORMAT String with specification of the output format, see Table 5

DATA_OUT formatted string according to the numerical input value

Description

The function converts a numerical object addressed via PTR_DATA_IN into an appropriate string,
considering the given format specification. The format specification transferred at the input FORMAT
defines the output format of the string returned as DATA_OUT, whose string conforms to the
numerical input value. Table 5 describes possible format specifications.

Table 5: Format Specifications for BIN_TO_STR

Object Type Format Specification Description

'd' Numerical output { 0 | 1 }

'b' Literal output in small form letters { true | false }

BOOL

'B' Literal output in capital letters { TRUE | FALSE }

'd' Output in decimal notation, definition of minimal output of
characters is possible (see text below)

'x' Output in hexadecimal notation with small form letters,
definition of minimal output of characters is possible (see
text below)

BYTE,
USINT,
SINT

WORD,
UINT,
INT

DWORD,
UDINT,
DINT

'X' Output in hexadecimal notation with capital letters,
definition of minimal output of characters is possible (see
text below)

REAL 'd' or 'f' Output in decimal notation with decimal places; definition
of minimal output of characters and decimal places is
possible (see text below)

For numerical types of integers, the format specifications 'd', 'x' und 'X' can be extended optionally
according to the definition of the minimal output of characters. This minimal number of characters has
to be attached to the format specification (e.g. 'd4'). A '0' set before the minimal number of characters
can effect that the output string is filled left-aligned with '0'-characters, if applicable, to achieve the
demanded field width (e.g. 'd04'). Otherwise, the output string is filled left-aligned with spaces.

For objects of type REAL, format specifications 'd', and 'f' can be extended optionally through the
definition of the minimal number of characters. It is thereby distinguished between the total number of
characters and decimal places. Decimal places are to specify with '.y' (e.g. 'f.4' for 4 decimal places).
Optionally, the minimal number of the whole output string can be defined in the form of 'x.y' left of the
point, whereat the decimal point is included. Therefore, the format specification 'f9.4' for example
causes the output of a string with 9 characters in total, of which one character is the decimal point
itself followed by 4 decimal places, so that 4 pre-decimal places result (9 total – 1 decimal point – 4
decimal places = 4 integers). A '0' set before the total minimal number of characters ('x' in format 'x.y')
effects that the output string is filled left-aligned with '0'-characters to achieve the demanded field width
(e.g. 'f09.4'). Otherwise, the output string is filled left-aligned with spaces.

If a successful change is not possible due to invalid parameters, the output string DATA_OUT receives
an appropriate error message in the plain text. (e.g. 'ERROR: data type not supported' or 'ERROR:
format type not supported').

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 22

Sample Program

VAR

 xBoolVar : BOOL;
 iIntVar : INT;
 rRealVar : REAL;

 pVar : POINTER;
 strResult : STRING;

END_VAR

 xBoolVar := TRUE;
 pVar := &xBoolVar;
 strResult := BIN_TO_STR (pVar, 'd'); (* strResult: '1' *)
 strResult := BIN_TO_STR (pVar, 'b'); (* strResult: 'true' *)

 iIntVar := 123;
 pVar := &iIntVar;
 strResult := BIN_TO_STR (pVar, 'd'); (* strResult: '123' *)
 strResult := BIN_TO_STR (pVar, 'x4'); (* strResult: ' 7b' *)
 strResult := BIN_TO_STR (pVar, 'X04'); (* strResult: '007B' *)

 rRealVar := 123.456;
 pVar := &rRealVar;
 strResult := BIN_TO_STR (pVar, 'f.4'); (* strResult: '123.4560' *)
 strResult := BIN_TO_STR (pVar, 'f09.4'); (* strResult: '0123.4560' *)

2.2.7 Function STR_TO_BIN

The function STR_TO_BIN converts a character string into an appropriate numerical value.

Prototype of the function

 +----------------------+
 | STR_TO_BIN |
 | |
 STRING ---|DATA_IN RES|--- USINT
 POINTER ---|PTR_DATA_OUT |
 STRING ---|FORMAT |
 | |
 +----------------------+

Definition of Operands

DATA_IN String, whose character sequence is to convert into a numerical value

FORMAT String with specification of the input format, see Table 6

PTR_DATA_OUT Address of an object, in which the changed numerical value is to store

RES Information on the implementation result of the change, possible error codes are

defined in Table 7.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 23

Description

This function converts a string passed at input DATA_IN into an appropriate numerical value and
stores it in the object addressed via PTR_DATA_OUT. The format specification passed at input
FORMAT describes the input format of the string, which is to concert into a numerical value. Table 6
describes possible format specifications.

Table 6: Format specifications for STR_TO_BIN

Object-
Type

Format Specification Description

'd' Input string in numerical notation { 0 | 1 } BOOL

'b' or 'B' Input string as literal, optional capital or small form letters,
{ true | false | TRUE | FALSE }

'd' Input string in decimal notation BYTE,
USINT,
SINT

WORD,
UINT,
INT

DWORD,
UDINT,
DINT

'x' or 'X' Input string in hexadecimal notation, optional capital or
small form letters

REAL 'd' or 'f' Input string in decimal notation with decimal places

Table 7: Error-Codes of Function STR_TO_BIN

Error-Code Meaning

0 No error has occurred during processing of the function block

1 Pointer refers to an object of unsupported data type

2 Invalid format specification (FORMAT) when selecting the function block

4 Invalid input string (DATA_IN) when selecting the function block

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 24

Sample Program

VAR

 xBoolVar : BOOL;
 iIntVar : INT;
 rRealVar : REAL;

 pVar : POINTER;
 usiRes : USINT;

END_VAR

 pVar := &xBoolVar;
 usiRes := STR_TO_BIN ('1', pVar, 'd');
 usiRes := STR_TO_BIN ('true', pVar, 'b');

 pVar := &iIntVar;
 usiRes := STR_TO_BIN ('-123', pVar, 'd');
 usiRes := STR_TO_BIN ('ABCD', pVar, 'x');

 pVar := &rRealVar;
 usiRes := STR_TO_BIN ('123.456', pVar, 'd');

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 25

3 Data Communication via UDP

3.1 Data Communication Application via UDP

UDP (User Datagram Protocol) is a minimal, connection-free and packet-oriented network protocol
which belongs to the transport layer of the Internet protocol suite. Most systems with Ethernet interface
used in the industrial sector support UDP. Therefore, this protocol can be recommended for the
Ethernet-based data transfer between PLC and systems like terminals (HMI) or host computers.

Sending and receiving of UDP packets occurs via sockets. The function block
LAN_UDP_CREATE_SOCKET is responsible for creating a local socket. The function block
LAN_UDP_SENDTO_STR enables the sending of data packets and function block
LAN_UDP_RECVFROM_STR enables the reception of data. A no longer required socket can be re-
enabled via the function block LAN_UDP_CLOSE_SOCKET. Exiting the PLC program leads internally
to an automatic shutdown of all occupied sockets.

3.2 Definitions for UDP Blocks

The following data types are globally defined in OpenPCS for the application via UDP blocks:

TYPE
 INETV4 : UDINT;
END_TYPE

TYPE
 SOCKID : UINT;
END_TYPE

Table 8: Error codes of the function blocks LAN_Xxx

Error Code Meaning

0 No error occurred during function block execution

1 The specified network number (NETNUMBER) is not supported

2 An invalid parameter has been specified while calling the block

3 Error while initializing the UDP layer on the PLC

4 The UDP layer on the PLC reports an error while creating, sending or receiving a
socket

5 No free socket available

6 The specified socket ID is invalid

7 The socket with the specified socket ID is not in use

8 The transferred send buffer is too big, the packet has been limited to the maximum
possible number of data bytes

9 The transferred buffer is too small, no data has been copied

10 The specified host is unknown

11 Pointer references an object of an unsupported data type

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 26

3.3 Function Block LAN_GET_HOST_CONFIG

The function block LAN_GET_HOST_CONFIG is used to determine the local host configuration.

Prototype of the Function Block

 +---------------------------+
 | LAN_GET_HOST_CONFIG |
 | |
 STRING ---|HOST_NAME---------HOST_NAME|--- STRING
 | INET_ADDR|--- INETV4
 | NUM_OF_SOCKETS|--- UINT
 | SOCKETS_IN_USE|--- UINT
 | |
 BOOL ---|ENABLE CONFIRM|--- BOOL
 | |
 USINT ---|NETNUMBER ERROR|--- WORD
 | ERRORINFO|--- DWORD
 | |
 +---------------------------+

Definition of Operands

HOST_NAME String variable for receiving the local host name of the PLC
INET_ADDR Local IP address of the PLC

NUM_OF_SOCKETS Number of maximum sockets which can be used for the PLC program
SOCKETS_IN_USE Number of the sockets currently being used

NETNUMBER Network number (Note: If the PLC only supports one Ethernet interface,

setting of this input can be skipped since numeric variables have already
been preset with the initial value 0 according to IEC61131)

ERROR The error code states information about the execution result of the function

block. Possible error codes are defined in Table 8.

ERRORINFO Reserved for additional error information

ENABLE Input for enabling or disabling the FB
CONFIRM Output for completed message via the FB

Description

The function block is used to determine the local host configuration of the PLC.

Sample Program

A detailed sample program in section 3.14 displays the application of all the UDP blocks described in
section 3.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 27

3.4 Function LAN_ASCII_TO_INET

The function LAN_ASCII_TO_INET converts an IP address transferred as a string in default "."
notation into the respective numeric presentation.

Prototype of the Function

 +---------------------------+
 | LAN_ASCII_TO_INET |
 | |
 STRING ---|IP_ADDR INET_ADDR|--- INETV4
 | |
 +---------------------------+

Definition of Operands

IP_ADDR String with IP address in default "." notation (e.g. '192.168.1.20')

INET_ADDR Numeric presentation of the transferred IP address

Description

This function converts the string with the IP address in default "." notation (e.g. '192.168.1.20')
transferred at input IP_ADDR into the respective numeric presentation and returns it at output
INET_ADDR. The numeric format of the IP address is used by function blocks as, e.g.,
LAN_GET_HOST_CONFIG, LAN_UDP_SENDTO_STR or LAN_UDP_RECVFROM_STR.

The function LAN_ASCII_TO_INET complements function LAN_INET_TO_ASCII (see section 3.5).

Sample Program

A detailed sample program in section 3.14 displays the application of all the UDP blocks described in
section 3.

3.5 Function LAN_INET_TO_ASCII

The function LAN_INET_TO_ASCII converts an IP address transferred in a numeric presentation into
the respective string with default "." notation.

Prototype of the Function

 +---------------------------+
 | LAN_INET_TO_ASCII |
 | |
 INETV4 ---|INET_ADDR IP_ADDR|--- STRING
 | |
 +---------------------------+

Definition of Operands

INET_ADDR Numeric presentation of the IP address

IP_ADDR String with IP address in default "." notation (e.g. '192.168.1.20')

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 28

Description

This function converts the IP address transferred at input INET_ADDR in a numeric presentation into
the respective string with default "." notation and returns it at output IP_ADDR. The numeric format of
the IP address is used by function blocks as, e.g., LAN_GET_HOST_CONFIG,
LAN_UDP_SENDTO_STR or LAN_UDP_RECVFROM_STR. This numeric presentation of the IP
address can be converted into a presentable string via the function LAN_INET_TO_ASCII.

The function LAN_INET_TO_ASCII complements function LAN_ASCII_TO_INET (see section 3.4).

Sample Program

A detailed sample program in section 3.14 displays the application of all the UDP blocks described in
section 3.

3.6 Function LAN_GET_HOST_BY_NAME

The function LAN_GET_HOST_BY_NAME determines the IP address for the specified host name
(only available on controls with DNS support).

Prototype of the Function

 +------------------------+
 | LAN_GET_HOST_BY_NAME |
 | |
 STRING ---|HOST_NAME INET_ADDR|--- INETV4
 | |
 +------------------------+

Definition of Operands

HOST_NAME String with the name of the host to be searched for

INET_ADDR Numeric presentation of the determined IP address

Description

This function determines the IP address for the host name specified at input HOST_NAME and returns
it at output INET_ADDR. The determined IP address can, e.g., be used for calling function block
LAN_UDP_SENDTO_STR.

Note: The function LAN_GET_HOST_BY_NAME is only available on controls with DNS support.

The function LAN_GET_HOST_BY_NAME complements function LAN_GET_HOST_BY_ADDR (see
section 3.7).

Sample Program

A detailed sample program in section 3.14 displays the application of all the UDP blocks described in
section 3.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 29

3.7 Function LAN_GET_HOST_BY_ADDR

The function LAN_GET_HOST_BY_ADDR determines the host name for the specified IP address
(only available on controls with DNS support).

Prototype of the Function

 +------------------------+
 | LAN_GET_HOST_BY_ADDR |
 | |
 INETV4 ---|INET_ADDR HOST_NAME|--- STRING
 | |
 +------------------------+

Definition of Operands

INET_ADDR Numeric presentation of the IP address to be resolved

HOST_NAME String with the name of the determined host

Description

This function determines the respective host name for the numeric IP address transferred at input
INET_ADDR and returns it as a string to output HOST_NAME. The function can, e.g., be used in
connection with LAN_UDP_RECVFROM_STR to resolve the IP addresses returned by this function
block as clear text names.

Note: The function LAN_GET_HOST_BY_NAME is only available on controls with DNS support.

The function LAN_GET_HOST_BY_ADDR complements function LAN_GET_HOST_BY_NAME (see
section 3.6).

Sample Program

A detailed sample program in section 3.14 displays the application of all the UDP blocks described in
section 3.

3.8 Function Block LAN_UDP_CREATE_SOCKET

The function block LAN_UDP_CREATE_SOCKET creates a socket for sending or receiving data.

Prototype of the Function Block

 +---------------------------+
 | LAN_UDP_CREATE_SOCKET |
 | |
 UINT ---|PORT SOCKET_ID|--- SOCKID
 | |
 BOOL ---|ENABLE CONFIRM|--- BOOL
 | |
 USINT ---|NETNUMBER ERROR|--- WORD
 | ERRORINFO|--- DWORD
 | |
 +---------------------------+

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 30

Definition of Operands

PORT Port number to which the socket is to be bound (see text)

SOCKET_ID Socket ID (an internal reference to the created socket assigned by the UDP

layer of the PLC)

NETNUMBER Network number (Note: If the PLC only supports one Ethernet interface,

setting of this input can be skipped, since numeric variables have already
been preset with the initial value 0 according to IEC61131)

ERROR The error code states information about the execution result of the function

block. Possible error codes are defined in Table 8.

ERRORINFO Reserved for additional error information

ENABLE Input for enabling or disabling the FB
CONFIRM Output for completed message via the FB

Description

The function block creates a socket for sending or receiving data. If the socket is intended for receiving
data, a valid port number has to be specified at input PORT. In this case, the PLC internally calls the
function bind() of the UDP layer and is thus capable of receiving data packets which are sent to its IP
address with the specified port number. On most systems the use of port numbers smaller than 1024
is only permitted for privileged processes; the range from 1024 to 49151 is still reserved for default
applications and administered by IANA (Internet Assigned Numbers Authority). If possible, port
numbers from the private range from 49152 to 65535 should, therefore, preferably be used for the
UDP communication with the PLC.

If the created socket should only be used for sending data, the specification of the port number is
optional. If input PORT has been set to zero, the UDP layer of the PLC internally uses a free port
number from the private range for sending. Calling of the internal function bind() within the UDP layer
is then unnecessary. However, specification of a defined port number can also be necessary for
sending, e.g., with an active firewall in the network which only forwards data to specific ports.

Upon its return the function block LAN_UDP_CREATE_SOCKET returns an internal reference
assigned by the UDP layer of the PLC to the created socket at output SOCKET_ID. This socket ID has
to be transferred when subsequently calling function blocks, e.g., LAN_UDP_SENDTO_STR or
LAN_UDP_RECVFROM_STR.

A socket which is no longer required can be re-enabled by calling LAN_UDP_CLOSE_SOCKET (see
section 0). Exiting the PLC program leads internally to an automatic shutdown of all occupied sockets.

Sample Program

A detailed sample program in section 3.14 displays the application of all the UDP blocks described in
section 3.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 31

3.9 Function Block LAN_UDP_CLOSE_SOCKET

The function block LAN_UDP_CLOSE_SOCKET is used to explicitly enable a socket which is no
longer required.

Prototype of the Function Block

 +--------------------------+
 | LAN_UDP_CLOSE_SOCKET |
 | |
 SOCKID ---|SOCKET_ID |
 | |
 BOOL ---|ENABLE CONFIRM|--- BOOL
 | |
 USINT ---|NETNUMBER ERROR|--- WORD
 | ERRORINFO|--- DWORD
 | |
 +--------------------------+

Definition of Operands

SOCKET_ID Socket ID of the socket to be enabled

NETNUMBER Network number (Note: If the PLC only supports one Ethernet interface,

setting of this input can be skipped since numeric variables have already
been preset with the initial value 0 according to IEC61131)

ERROR The error code states information about the execution result of the function

block. Possible error codes are defined in Table 8.
ERRORINFO Reserved for additional error information
ENABLE Input for enabling or disabling the FB
CONFIRM Output for completed message via the FB

Description

The function block is used to explicitly enable a socket which is no longer required. The SOCKET_ID
is the internal reference to the respective socket returned by the UDP layer of the PLC while calling
LAN_UDP_CREATE_SOCKET (see section 3.8). All the sockets which have not been explicitly
enabled are automatically closed internally when exiting the PLC program.

Sample Program

A detailed sample program in section 3.14 displays the application of all the UDP blocks described in
section 3.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 32

3.10 Function Block LAN_UDP_RECVFROM_STR

The function block LAN_UDP_RECVFROM_STR is used to read UDP packets from the receive buffer
of the UDP layer.

Prototype of the Function Block

 +--------------------------+
 | LAN_UDP_RECVFROM_STR |
 | |
 SOCKID ---|SOCKET_ID PEER_ADDR|--- INETV4
 | PEER_PORT|--- UINT
 | |
 STRING ---|RXDATA--------------RXDATA|--- STRING
 INT ---|MAXLENGTH RXLENGTH|--- INT
 | |
 BOOL ---|ENABLE CONFIRM|--- BOOL
 | |
 USINT ---|NETNUMBER ERROR|--- WORD
 | ERRORINFO|--- DWORD
 | |
 +--------------------------+

Definition of Operands

SOCKET_ID Socket ID of the socket to be polled

RXDATA String variable for receiving the read characters
MAXLENGTH Limitation of the number of characters to be read. If the number is 0, the

buffer length of the transferred string is internally determined and used as
the delimiter for the number of characters to be read (Note: the standard
buffer size of a string in OpenPCS is 32 characters).

RXLENGTH Length of the read character string

PEER_ADDR Numeric presentation of the IP address of the opposite position from which

the packet was received
PEER_PORT Port number which was used by the opposite position to send the data

NETNUMBER Network number (Note: If the PLC only supports one Ethernet interface,

setting of this input can be skipped since numeric variables have already
been preset with the initial value 0 according to IEC61131)

ERROR The error code states information about the execution result of the function

block. Possible error codes are defined in Table 8.

ERRORINFO Reserved for additional error information

ENABLE Input for enabling or disabling the FB
CONFIRM Output for completed message via the FB

Description

The function block is used to read UDP packets from the receive buffer of the UDP layer. If output
CONFIRM has been set to TRUE when the function block returns, the string variable specified as
input/output parameter RXDATA contains the received string. Output RXLENGTH specifies the
number of characters stored in RXDATA. If output CONFIRM has been set to FALSE when the block
returns, no characters were received via the specified socket.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 33

When receiving packets (CONFIRM set to TRUE) the outputs PEER_ADDR and PEER_PORT receive
information about the IP address of the opposite position as well as the port number used for sending
it. If the PLC should response to this received packet, the values from PEER_ADDR and
PEER_PORT have to be used as destination specifications for the subsequent call of block
LAN_UDP_SENDTO_STR (see section 3.11):

LAN_UDP_SENDTO_STR.PEER_ADDR := LAN_UDP_RECVFROM_STR.PEER_ADDR;
LAN_UDP_SENDTO_STR.PEER_PORT := LAN_UDP_RECVFROM_STR.PEER_PORT;

The socket to be used for receiving packets must have been created via the function block
LAN_UDP_CREATE_SOCKET stating a valid port number prior to its use (see section 0).

Sample Program

A detailed sample program in section 3.14 displays the application of all the UDP blocks described in
section 3.

3.11 Function Block LAN_UDP_SENDTO_STR

The function block LAN_UDP_SENDTO_STR is used for sending UDP packets.

Prototype of the Function Block

 +--------------------------+
 | LAN_UDP_SENDTO_STR |
 | |
 SOCKID ---|SOCKET_ID |
 INETV4 ---|PEER_ADDR |
 UINT ---|PEER_PORT |
 | |
 STRING ---|TXDATA--------------TXDATA|--- STRING
 INT ---|TXLENGTH |
 | |
 BOOL ---|ENABLE CONFIRM|--- BOOL
 | |
 USINT ---|NETNUMBER ERROR|--- WORD
 | ERRORINFO|--- DWORD
 | |
 +--------------------------+

Definition of Operands

SOCKET_ID Socket ID of the socket to be used for sending

PEER_ADDR Numeric presentation of the IP address of the opposite position to which the

packet is to be sent
PEER_PORT Port number of the opposite position to which the packet is to be sent

TXDATA String variable with the character string to be sent
TXLENGTH Number of characters to be sent, if the number is 0, the length of the

character string contained in the string TXDATA is internally determined
(equals LEN(TXDATA);) and used as the number of characters to be sent.

NETNUMBER Network number (Note: If the PLC only supports one Ethernet interface,

setting of this input can be skipped since numeric variables have already
been preset with the initial value 0 according to IEC61131)

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 34

ERROR The error code states information about the execution result of the function
block. Possible error codes are defined in Table 8.

ERRORINFO Reserved for additional error information

ENABLE Input for enabling or disabling the FB
CONFIRM Output for completed message via the FB

Description

The function block is used for sending UDP packets. The inputs PEER_ADDR and PEER_PORT
contain the address information of the opposite position to which the packet is to be sent. If the packet
to be sent is a response to a message previously received with the function block
LAN_UDP_RECVFROM_STR, the sender’s address information has to be transferred here (see
section 3.10).

The socket to be used for sending packets must have been created via the function block
LAN_UDP_CREATE_SOCKET prior to its use (see section 3.8).

Sample Program

A detailed sample program in section 3.14 displays the application of all the UDP blocks described in
section 3.

3.12 Function Block LAN_UDP_RECVFROM_BIN

The function block LAN_UDP_RECVFROM_BIN is used to read UDP packets from the receive buffer
of the UDP layer.

Prototype of the Function Block

 +--------------------------+
 | LAN_UDP_RECVFROM_BIN |
 | |
 SOCKID ---|SOCKET_ID PEER_ADDR|--- INETV4
 | PEER_PORT|--- UINT
 | |
 POINTER ---|PTR_RXDATA |
 INT ---|MAXLENGTH RXLENGTH|--- INT
 | |
 BOOL ---|ENABLE CONFIRM|--- BOOL
 | |
 USINT ---|NETNUMBER ERROR|--- WORD
 | ERRORINFO|--- DWORD
 | |
 +--------------------------+

Definition of Operands

SOCKET_ID Socket ID of the socket to be polled

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 35

PTR_RXDATA Address of an object for receiving the read data bytes
MAXLENGTH Limitation of number of bytes to read, if 0, the length of the object addressed

by PTR_RXDATA is internally determined and used as the number of bytes
to be read (there are max. read so much bytes as the object can take up)

RXLENGTH Number of read data bytes

PEER_ADDR Numeric presentation of the IP address of the opposite position from which

the packet was received
PEER_PORT Port number which was used by the opposite position to send the data

NETNUMBER Network number (Note: If the PLC only supports one Ethernet interface,

setting of this input can be skipped since numeric variables have already
been preset with the initial value 0 according to IEC61131)

ERROR The error code states information about the execution result of the function

block. Possible error codes are defined in Table 8.

ERRORINFO Reserved for additional error information

ENABLE Input for enabling or disabling the FB
CONFIRM Output for completed message via the FB

Description

The function block is used to read UDP packets from the receive buffer of the UDP layer. If output
CONFIRM has been set to TRUE when the function block returns, then the object addressed by
element PTR_RXDATA contains the received data bytes. Output RXLENGTH specifies the number of
read data bytes. If output CONFIRM has been set to FALSE when the block returns, no data bytes
were received via the specified socket.

When receiving packets (CONFIRM set to TRUE) the outputs PEER_ADDR and PEER_PORT receive
information about the IP address of the opposite position as well as the port number used for sending
it. If the PLC should response to this received packet, the values from PEER_ADDR and
PEER_PORT have to be used as destination specifications for the subsequent call of block
LAN_UDP_SENDTO_BIN (see section 3.13):

LAN_UDP_SENDTO_BIN.PEER_ADDR := LAN_UDP_RECVFROM_BIN.PEER_ADDR;
LAN_UDP_SENDTO_BIN.PEER_PORT := LAN_UDP_RECVFROM_BIN.PEER_PORT;

The socket to be used for receiving packets must have been created via the function block
LAN_UDP_CREATE_SOCKET stating a valid port number prior to its use (see section 0).

Sample Program

A detailed sample program in section 3.14 displays the application of all the UDP blocks described in
section 3.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 36

3.13 Function Block LAN_UDP_SENDTO_BIN

The function block LAN_UDP_SENDTO_BIN is used for sending UDP packets.

Prototype of the Function Block

 +--------------------------+
 | LAN_UDP_SENDTO_BIN |
 | |
 SOCKID ---|SOCKET_ID |
 INETV4 ---|PEER_ADDR |
 UINT ---|PEER_PORT |
 | |
 POINTER ---|PTR_TXDATA |
 INT ---|TXLENGTH |
 | |
 BOOL ---|ENABLE CONFIRM|--- BOOL
 | |
 USINT ---|NETNUMBER ERROR|--- WORD
 | ERRORINFO|--- DWORD
 | |
 +--------------------------+

Definition of Operands

SOCKET_ID Socket ID of the socket to be used for sending

PEER_ADDR Numeric presentation of the IP address of the opposite position to which the

packet is to be sent
PEER_PORT Port number of the opposite position to which the packet is to be sent

PTR_TXDATA Address of an object with the binary data to be sent
TXLENGTH Number of data bytes to be sent, if the number is 0, the length of the object

addressed by PTR_TXDATA is internally determined and used as the
number of characters to be sent

NETNUMBER Network number (Note: If the PLC only supports one Ethernet interface,

setting of this input can be skipped since numeric variables have already
been preset with the initial value 0 according to IEC61131)

ERROR The error code states information about the execution result of the function

block. Possible error codes are defined in Table 8.

ERRORINFO Reserved for additional error information

ENABLE Input for enabling or disabling the FB
CONFIRM Output for completed message via the FB

Description

The function block is used for sending UDP packets. The inputs PEER_ADDR and PEER_PORT
contain the address information of the opposite position to which the packet is to be sent. If the packet
to be sent is a response to a message previously received with the function block
LAN_UDP_RECVFROM_BIN, the sender’s address information has to be transferred here (see
section 3.12).

The socket to be used for sending packets must have been created via the function block
LAN_UDP_CREATE_SOCKET prior to its use (see section 3.8).

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 37

Sample Program

A detailed sample program in section 3.14 displays the application of all the UDP blocks described in
section 3.

3.14 Sample Program for applying UDP Function Blocks

The following sample program illustrates the application of all the UDP blocks described in section 3.
The sample program realizes a simple server which accepts and executes commands in string format
and returns a respective response string with the execution result to the client. Firstly, block
LAN_UDP_CREATE_SOCKET is called to create a socket for exchanging data with the client.
Secondly, the server remains in the subsequent program step until block
LAN_UDP_RECVFROM_STR signals the reception of the command by a client. After interpreting and
executing the command (in the user-specific function block "ExecCommand", not displayed here) the
sample program returns the generated response string to the client via block
LAN_UDP_SENDTO_STR. The IP address and port number which were received previously during
command reception of LAN_UDP_CREATE_SOCKET are accepted as address information for calling
LAN_UDP_SENDTO_STR.

Sample Program

PROGRAM UdpServer
VAR CONSTANT
 NETNUMBER : USINT := 0;
 SVRPORT : UINT := 55555;
 STOP_CMD : STRING := 'stop';
END_VAR

VAR
 xServerRunning : BOOL;

 FB_ExecCommand : ExecCommand;
 strRxCommand : STRING(128);
 strTxResult : STRING(250);

 FB_LanGetHostConfig : LAN_GET_HOST_CONFIG;
 strPlcHostName : STRING(64);
 inetPlcIpAddr : INETV4;
 uiNumOfSockets : UINT;
 uiSocketsInUse : UINT;
 strPlcIpAddr : STRING;

 FB_LanUdpCreateSocket : LAN_UDP_CREATE_SOCKET;
 FB_LanUdpCloseSocket : LAN_UDP_CLOSE_SOCKET;
 SocketID : SOCKID;

 FB_LanUdpRecvfromStr : LAN_UDP_RECVFROM_STR;
 strRxData : STRING(128);
 inetPeerIpAddr : INETV4;
 uiPeerPort : UINT;
 iRxDataLen : INT;
 strRxDataLen : STRING;
 strPeerIpAddr : STRING;
 strPeerPort : STRING;

 FB_LanUdpSendtoStr : LAN_UDP_SENDTO_STR;
 strTxData : STRING(250);

 uiProcState : UINT := 0;
END_VAR

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 38

(* ========== Program UdpServer ========== *)

CASE uiProcState OF

 (* ----- Inititialization ----- *)
 0:
 (*--*)
 (* The following block is not really necessary in this *)
 (* application but it shows how to use some additional *)
 (* LAN function(-blocks) which are maybe be helpful in *)
 (* other projects. *)
 FB_LanGetHostConfig (
 ENABLE := TRUE,
 NETNUMBER := NETNUMBER,
 HOST_NAME := strPlcHostName
 |
 inetPlcIpAddr := INET_ADDR,
 uiNumOfSockets := NUM_OF_SOCKETS,
 uiSocketsInUse := SOCKETS_IN_USE);

 strPlcIpAddr := LAN_INET_TO_ASCII (inetPlcIpAddr);
 inetPlcIpAddr := LAN_ASCII_TO_INET (strPlcIpAddr);

 strPlcHostName := LAN_GET_HOST_BY_ADDR (inetPlcIpAddr);
 inetPlcIpAddr := LAN_GET_HOST_BY_NAME (strPlcHostName);
 (*--*)

 (* ... continue with realy serious stuff for this application... *)
 FB_LanUdpCreateSocket (
 ENABLE := TRUE,
 NETNUMBER := NETNUMBER,
 PORT := SVRPORT
 |
 SocketID := SOCKET_ID);

 xServerRunning := TRUE;
 uiProcState := uiProcState + 1; (* new state: Wait for Receipt *)

 (* ----- Wait for Receipt ----- *)
 1:
 (* Because this application acts as a server it is *)
 (* necessary to save the output values PEER_ADDR and *)
 (* PEER_PORT from the FB LAN_UDP_RECVFROM_STR. This *)
 (* both parameters indentifies the client host from *)
 (* which the command/request was receipt. They are used *)
 (* later to send back the answer to the peer client *)
 (* via FB LAN_UDP_SENDTO_STR. *)
 FB_LanUdpRecvfromStr (
 ENABLE := TRUE,
 NETNUMBER := NETNUMBER,
 SOCKET_ID := SocketID,
 MAXLENGTH := 0, (* use StrAllocLen of strRxData *)
 RXDATA := strRxData
 |
 inetPeerIpAddr := PEER_ADDR,
 uiPeerPort := PEER_PORT,
 iRxDataLen := RXLENGTH);

 IF (FB_LanUdpRecvfromStr.CONFIRM = TRUE) THEN
 uiProcState := uiProcState + 1; (* new state: Process Command *)
 END_IF;

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 39

 (* ----- Process Command ----- *)
 2:
 IF (strRxData = STOP_CMD) THEN
 xServerRunning := FALSE;
 END_IF;

 IF (xServerRunning = TRUE) THEN
 (* execute command *)
 strRxCommand := strRxData;
 FB_ExecCommand (
 strCommand_i := strRxCommand
 |
 strTxResult := strResult_o);
 ELSE
 (* show good-by message *)
 strTxResult := '$NServer stopped.$N';
 END_IF;

 (* create answer string *)
 strRxDataLen := INT_TO_STRING(iRxDataLen);
 strPeerIpAddr := LAN_INET_TO_ASCII(inetPeerIpAddr);
 strPeerPort := UINT_TO_STRING(uiPeerPort);

 strTxData := CONCAT ('$NPLC: ', strRxDataLen, ' Byte(s) received ',
 'from IP-Address=', strPeerIpAddr, '/',
 'Port=', strPeerPort, ':',
 '$N-> Command: ', strRxData,
 '$N-> Result: ', strTxResult);

 uiProcState := uiProcState + 1; (* new state: Send Response *)

 (* ----- Send Response ----- *)
 3:
 (* The values PEER_ADDR and PEER_PORT identifies the *)
 (* client host, to which the answer should be send now. *)
 (* Both values was output parameters from a previous *)
 (* call of the FB LAN_UDP_RECVFROM_STR. *)
 FB_LanUdpSendtoStr (
 ENABLE := TRUE,
 NETNUMBER := NETNUMBER,
 SOCKET_ID := SocketID,
 PEER_ADDR := inetPeerIpAddr,
 PEER_PORT := uiPeerPort,
 TXDATA := strTxData,
 TXLENGTH := 0);

 IF (xServerRunning = TRUE) THEN
 uiProcState := uiProcState - 2; (* go back to reveive state *)
 ELSE
 uiProcState := uiProcState + 1; (* goto finish state *)
 END_IF;

 (* ----- Finish Server ----- *)
 4:
 FB_LanUdpCloseSocket (
 ENABLE := TRUE,
 NETNUMBER := NETNUMBER,
 SOCKET_ID := SocketID);

 uiProcState := uiProcState + 1;

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 40

 (* ----- Stop State ----- *)
 5:
 ; (* simply do nothing *)

 (* --- unknown state --- *)
 ELSE
 uiProcState := 0;

END_CASE;

RETURN;

END_PROGRAM

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 41

4 Securing Process Data in the Nonvolatile Storage

4.1 Application of Nonvolatile Storage for Process Data

The defined PLC program variables can only store the information they contain during the program
runtime. This information is usually lost when the program is terminated or the PLC shutdown. The
function block NVDATA_Xxx (NV = nonvolatile), described in sections 4.2, 4.3 and 4.4, allows the
filing of process data in a nonvolatile storage.

Storing process data in the nonvolatile storage allows a PLC program, for example, to continue the
operation of production counters even after a system restart. It is also possible to retentively store
parameters which have been reconfigured to the system runtime by the user, e.g. via an operating
device.

4.2 Function Block NVDATA_BIT

The function block NVDATA_BIT writes logical process data (BYTE, WORD, DWORD) in as well as
reads stored process data from the PLC nonvolatile storage (EEPROM, file).

Prototype of the Function Block

 +--------------+
 | NVDATA_BIT |
 | |
 BYTE ---|DIN1 DOUT1|--- BYTE
 WORD ---|DIN2 DOUT2|--- WORD
 DWORD ---|DIN3 DOUT3|--- DWORD
 | |
 UINT ---|ADDR SIZE|--- UINT
 USINT ---|MODE |
 | |
 USINT ---|DEVICE ERROR|--- USINT
 | |
 +--------------+

Definition of Operands

DIN1 Data input for writing a BYTE value
DIN2 Data input for writing a WORD value
DIN3 Data input for writing a DWORD value

ADDR Address in the nonvolatile storage to read and write data (parameter MODE

dependent)
MODE Setting of the read or write operation to be executed, Table 9 contains a list of the

supported modes

DOUT1 Data output for reading a BYTE value
DOUT2 Data output for reading a WORD value
DOUT3 Data output for reading a DWORD value

SIZE This output states the number of written or read bytes (MODE <> 0) or the size of

the usable nonvolatile storage (MODE = 0, see text).

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 10.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 42

DEVICE Device number, this parameter depends on the respective control.
(Note: most controls only support the device 0. Therefore, this input does not have
to be set since it is already pre-occupied with the initial value 0).

Table 9 Call Modes for the Function Block NVDATA_BIT

Mode Action

16#00 Determine the size of the usable nonvolatile storage (see text)

16#01 Read a BYTE from the nonvolatile storage at data output DOUT1

16#02 Read a WORD from the nonvolatile storage at data output DOUT2

16#03 Read a DWORD from the nonvolatile storage at data output DOUT3

16#81 Write a BYTE in the nonvolatile storage at data input DIN1

16#82 Write a WORD in the nonvolatile storage at data input DIN2

16#83 Write a DWORD in the nonvolatile storage at data input DIN3

Table 10 Error Codes of the Function Blocks NVDATA_Xxx

Error Code Definition

0 No error occurred during execution of the function block

1 Hardware error occurred during execution of the function block

2 Invalid device number (DEVICE) when calling the function block

4 Invalid mode (MODE) when calling the function block

8 Specified address (ADDR) is too large, maximum available storage area exceeded

16 Pointer references an object of an unsupported data type

Description

Various types of data can be written in or read from a nonvolatile storage (EEPROM, file) via the
function block. Depending on the data to be written or read, the respective mode has to be set at input
MODE according to Table 9. Ensure that, depending on the selected mode, the data is either stored at
the associated data input or read from the associated data output. The passed value at input ADDR is
the basic address for the read or write operation to be executed. If addressing exceeds the maximum
memory size, the function block returns with a corresponding error. The PLC program is fully
responsible for partitioning the available memory and for ensuring that the value used at input ADDR
does not cause overlapping of the data to be stored. The number of read or written bytes is returned to
output SIZE. This value can then be used to calculate the next free address
(ADDRnew := ADDRold + SIZE).

Calling the block via MODE = 0 determines the size of the usable nonvolatile storage. For this, the
remaining residual size as from the value passed at input ADDR is returned to output SIZE
(SIZE := NVDATAFullSize - ADDR). Call the block via ADDR := 0 to determine the overall size of the
nonvolatile storage.

Possible errors during execution of the function block are displayed at output ERROR and described in
Table 10.

The following sample program shows the application of the function block NVDATA_BIT. At first, a
data byte is written from address 10 onwards and subsequently read by the same address. Since input

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 43

DEVICE is not set by the user program, the standard setting remains the same and the block implicitly
uses the device number 0.

Sample Program

PROGRAM SaveDataBit

VAR CONSTANT
 NVDBIT_MODE_GET_SIZE : USINT := 16#00;
 NVDBIT_MODE_RD_BYTE : USINT := 16#01;
 NVDBIT_MODE_RD_WORD : USINT := 16#02;
 NVDBIT_MODE_RD_DWORD : USINT := 16#03;
 NVDBIT_MODE_WR_BYTE : USINT := 16#81;
 NVDBIT_MODE_WR_WORD : USINT := 16#82;
 NVDBIT_MODE_WR_DWORD : USINT := 16#83;

 NVDATA_ERROR_SUCCESS : USINT := 0;
 NVDATA_ERROR_HW_ERROR : USINT := 1;
 NVDATA_ERROR_UNKNOWN_DEVICE : USINT := 2;
 NVDATA_ERROR_INVALID_MODE : USINT := 4;
 NVDATA_ERROR_OUT_OF_MEM : USINT := 8;
END_VAR

VAR
 WriteDataByte : BYTE;
 WriteDataSize : UINT;
 ReadDataByte : BYTE;
 ReadDataSize : UINT;
 Error : ARRAY[0..1] OF USINT;

 FB_NvDataBit : NVDATA_BIT;
END_VAR

(* write a BYTE value into EEPROM *)
LD 16#10
ST WriteDataByte

CAL FB_NvDataBit (
 DIN1 := WriteDataByte,
 ADDR := 10,
 MODE := NVDBIT_MODE_WR_BYTE
 |
 WriteDataSize := SIZE,
 Error[0] := ERROR)

(* read a BYTE value from EEPROM *)
CAL FB_NvDataBit (
 ADDR := 10,
 MODE := NVDBIT_MODE_RD_BYTE
 |
 ReadDataByte := DOUT1,
 ReadDataSize := SIZE,
 Error[1] := ERROR)

RET

END_PROGRAM

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 44

4.3 Function Block NVDATA_INT

The function block NVDATA_INT writes arithmetical process data (SINT, INT, DINT, REAL) in as well
as reads stored process data from the PLC nonvolatile storage (EEPROM, file).

Prototype of the Function Block

 +--------------+
 | NVDATA_INT |
 | |
 SINT ---|DIN1 DOUT1|--- SINT
 INT ---|DIN2 DOUT2|--- INT
 DINT ---|DIN3 DOUT3|--- DINT
 REAL ---|DIN4 DOUT4|--- REAL
 | |
 UINT ---|ADDR SIZE|--- UINT
 USINT ---|MODE |
 | |
 USINT ---|DEVICE ERROR|--- USINT
 | |
 +--------------+

Definition of Operands

DIN1 Data input for writing a SINT value
DIN2 Data input for writing an INT value
DIN3 Data input for writing a DINT value
DIN4 Data input for writing a REAL value

ADDR Address in the nonvolatile storage to read and write data (parameter MODE

dependent)
MODE Setting of the read or write operation to be executed, Table 11 contains a list of the

supported modes.

DOUT1 Data output for reading a SINT value
DOUT2 Data output for reading an INT value
DOUT3 Data output for reading a DINT value
DOUT4 Data output for reading a REAL value

SIZE This output states the number of written or read bytes (MODE <> 0) or the size of

the usable nonvolatile storage (MODE = 0, see text).

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 10 (they are identical to the error codes
of the block NVDATA_BIT).

DEVICE Device number, this parameter depends on the respective control.

(Note: most controls only support the device 0. Therefore, this input does not have
to be set since it is already pre-occupied with the initial value 0).

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 45

Table 11 Call Mode for the Function Block NVDATA_INT

Mode Action

16#00 Determine the size of the usable nonvolatile storage (see text)

16#01 Read a SINT from the nonvolatile storage at data output DOUT1

16#02 Read an INT from the nonvolatile storage at data output DOUT2

16#03 Read a DINT from the nonvolatile storage at data output DOUT3

16#04 Read a REAL from the nonvolatile storage at data output DOUT4

16#81 Write a SINT in the nonvolatile storage at data input DIN1

16#82 Write an INT in the nonvolatile storage at data input DIN2

16#83 Write a DINT in the nonvolatile storage at data output DIN3

16#84 Write a REAL in the nonvolatile storage at data input DIN4

Description

Various types of data can be written in or read from a nonvolatile storage (EEPROM, file) via the
function block. Depending on the data to be read or written, the respective mode has to be set at input
MODE according to Table 11. Ensure that, depending on the selected mode, the data is either stored
at the associated data input or read from the associated data output. The value passed at input ADDR
is the basic address for the read or write operation to be executed. If addressing exceeds the
maximum memory size, the function block returns with a corresponding error. The PLC program is
fully responsible for partitioning the available memory and for ensuring that the value used at input
ADDR does not cause overlapping of the data to be stored. The number of read or written bytes is
returned to output SIZE. This value can then be used to calculate the next free address
(ADDRnew := ADDRold + SIZE).

Calling the block via MODE = 0 determines the size of the usable nonvolatile storage. For this, the
remaining residual size as from the value passed at input ADDR is returned to output SIZE
(SIZE := NVDATAFullSize - ADDR). Call the block via ADDR := 0 to determine the overall size of the
nonvolatile storage.

Possible errors during execution of the function block are displayed at output ERROR and described in
Table 10 (they are identical to the error codes of the NVDATA_BIT block).

The following sample program shows the application of the function block NVDATA_INT. At first, a
REAL value is written from address 20 onwards and subsequently read by the same address. Since
input DEVICE is not set by the user program, the standard setting remains the same and the block
implicitly uses the device number 0.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 46

Sample Program

PROGRAM SaveDataInt

VAR CONSTANT
 NVDINT_MODE_GET_SIZE : USINT := 16#00;
 NVDINT_MODE_RD_SINT : USINT := 16#01;
 NVDINT_MODE_RD_INT : USINT := 16#02;
 NVDINT_MODE_RD_DINT : USINT := 16#03;
 NVDINT_MODE_RD_REAL : USINT := 16#04;
 NVDINT_MODE_WR_SINT : USINT := 16#81;
 NVDINT_MODE_WR_INT : USINT := 16#82;
 NVDINT_MODE_WR_DINT : USINT := 16#83;
 NVDINT_MODE_WR_REAL : USINT := 16#84;

 NVDATA_ERROR_SUCCESS : USINT := 0;
 NVDATA_ERROR_HW_ERROR : USINT := 1;
 NVDATA_ERROR_UNKNOWN_DEVICE : USINT := 2;
 NVDATA_ERROR_INVALID_MODE : USINT := 4;
 NVDATA_ERROR_OUT_OF_MEM : USINT := 8;
END_VAR

VAR
 WriteDataReal : REAL;
 WriteDataSize : UINT;
 ReadDataReal : REAL;
 ReadDataSize : UINT;
 Error : ARRAY[0..1] OF USINT;

 FB_NvDataInt : NVDATA_INT;
END_VAR

(* write a REAL value into EEPROM *)
LD 7.89
ST WriteDataReal

CAL FB_NvDataInt (
 DIN4 := WriteDataReal,
 ADDR := 20,
 MODE := NVDINT_MODE_WR_REAL
 |
 WriteDataSize := SIZE,
 Error[0] := ERROR)

(* read a REAL value from EEPROM *)
CAL FB_NvDataInt (
 ADDR := 20,
 MODE := NVDINT_MODE_RD_REAL
 |
 ReadDataReal := DOUT4,
 ReadDataSize := SIZE,
 Error[1] := ERROR)

RET

END_PROGRAM

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 47

4.4 Function Block NVDATA_STR

The function block NVDATA_STR writes character string-based process data (STRING) in as well as
reads stored process data from the PLC nonvolatile storage (EEPROM, file).

Prototype of the Function Block

 +--------------+
 | NVDATA_STR |
 | |
 STRING ---|DINOUT--DINOUT|--- STRING
 INT ---|LENGTH |
 BOOL ---|SETEOT |
 | |
 UINT ---|ADDR SIZE|--- UINT
 USINT ---|MODE |
 | |
 USINT ---|DEVICE ERROR|--- USINT
 | |
 +--------------+

Definition of Operands

DINOUT Data in and output for reading or writing a STRING value
LENGTH Limitation of the number of characters to be read or written. If 0, the buffer length of

the passed string is internally determined and used as the number of characters to
be read or written (equals LEN(DINOUT);)
Note: the standard string buffer size in OpenPCS is 32 characters.

ADDR Address in the nonvolatile storage to read and write data (parameter MODE

dependent)
MODE Setting of the read or write operation to be executed: Table 12 contains a list of the

supported modes

SETEOT TRUE: The string is stored with terminating character

FALSE: Storage of the terminating character is blanked (Default: TRUE, see text)

SIZE This output states the number of written or read bytes (MODE <> 0) or the size of

the usable nonvolatile storage (MODE = 0, see text).

ERROR: The error code states information about the execution result of the function block.

Possible error codes are defined in Table 10 (they are identical to the error codes
of the NVDATA_BIT block).

DEVICE Device number, this parameter depends on the respective control.

(Note: most controls only support the device 0. Therefore, this input does not have
to be set since it is already pre-occupied with the initial value 0).

Table 12 Call Mode for the Function Block NVDATA_STR

Mode Action

16#00 Determine the size of the usable nonvolatile storage (see text)

16#08 Read a STRING from the nonvolatile storage at data output DINOUT

16#88 Write a STRING into the nonvolatile storage at data input DINOUT

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 48

Description

Character string-based data can be written in or read from a nonvolatile storage (EEPROM, file) via
the function block. Depending on the data to be read or written, the respective mode has to be set at
input MODE according to Table 12. For this, the parameter DINOUT is used as in or output depending
on the mode. The value passed at input ADDR is the basic address for the read or write operation to
be executed. If addressing exceeds the maximum memory size, the function block returns with a
corresponding error. The PLC program is fully responsible for partitioning the available memory and
for ensuring that the value used at input ADDR does not cause overlapping of the data to be stored.
The number of read or written bytes is returned to output SIZE. This value can then be used to
calculate the next free address (ADDRnew := ADDRold + SIZE).

Input LENGTH specifies the number of valid characters during writing. If this value is 0, the length of
the character string in the string is determined internally (equals LEN(DINOUT);) and used as the
number of characters to be written. In this case, the entire occupied string content is written. Input
LENGTH can be used during reading to limit the number of characters to be processed to the
specified value.

Use input SETEOT to set whether the string’s terminating character should also be stored or not
(Default: TRUE). If the string is completely stored in the nonvolatile storage together with the
terminating character, the length is not necessary during reading at input LENGTH (LENGTH = 0).
The block accepts all the characters until the end delimiter in the string passed to parameter DINOUT.
Storage of the terminating character is blanked when the block is called via SETEOT = FALSE.
Therefore, one byte less is occupied per string in the non-volatile storage. However, in this case the
string length has to be known and specified at input LENGTH during reading. If the terminating
character has been written, it is taken into consideration when the processed characters are specified
at output SIZE. Therefore, when calling the block via SETEOT = TRUE, the value of output SIZE is
equal to LEN(DINOUT) + 1.

Calling the block via MODE = 0 determines the size of the usable nonvolatile storage. For this, the
remaining residual size as from the value passed at input ADDR is returned to output SIZE
(SIZE := NVDATAFullSize - ADDR). Call the block via ADDR := 0 to determine the overall size of the
nonvolatile storage.

Possible errors during execution of the function block are displayed at output ERROR and described in
Table 10 (they are identical to the error codes of the NVDATA_BIT block).

The following sample program shows the application of the function block NVDATA_STR. At first, a
string is written from address 30 onwards and subsequently read by the same address. Since input
DEVICE is not set by the user program, the standard setting remains the same and the block implicitly
uses the device number 0.

Sample Program

PROGRAM SaveDataStr

VAR CONSTANT
 NVDSTR_MODE_GET_SIZE : USINT := 16#00;
 NVDSTR_MODE_RD_STRING : USINT := 16#08;
 NVDSTR_MODE_WR_STRING : USINT := 16#88;

 NVDATA_ERROR_SUCCESS : USINT := 0;
 NVDATA_ERROR_HW_ERROR : USINT := 1;
 NVDATA_ERROR_UNKNOWN_DEVICE : USINT := 2;
 NVDATA_ERROR_INVALID_MODE : USINT := 4;
 NVDATA_ERROR_OUT_OF_MEM : USINT := 8;
END_VAR

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 49

VAR
 WriteDataString : STRING;
 WriteDataSize : UINT;
 ReadDataString : STRING;
 ReadDataSize : UINT;
 Error : ARRAY[0..1] OF USINT;

 FB_NvDataStr : NVDATA_STR;
END_VAR

(* write a STRING value into EEPROM *)
LD 'HelloWorld'
ST WriteDataString

CAL FB_NvDataStr (
 DINOUT := WriteDataString,
 LENGTH := 0, (* save whole string *)
 SETEOT := TRUE, (* include termination character *)
 ADDR := 30,
 MODE := NVDSTR_MODE_WR_STRING
 |
 WriteDataSize := SIZE,
 Error[0] := ERROR)

(* read a STRING value from EEPROM *)
CAL FB_NvDataStr (
 DINOUT := ReadDataString,
 LENGTH := 0, (* read whole string *)
 ADDR := 30,
 MODE := NVDSTR_MODE_RD_STRING
 |
 ReadDataSize := SIZE,
 Error[1] := ERROR)

RET

END_PROGRAM

4.5 Function Block NVDATA_BIN

The function block NVDATA_BIN writes binary process data in as well as reads stored process data
from the PLC nonvolatile storage (EEPROM, file).

Prototype of the Function Block

 +--------------+
 | NVDATA_BIN |
 | |
 POINTER ---|PTR_DINOUT |
 INT ---|LENGTH |
 | |
 UINT ---|ADDR SIZE|--- UINT
 USINT ---|MODE |
 | |
 USINT ---|DEVICE ERROR|--- USINT
 | |
 +--------------+

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 50

Definition of Operands

DINOUT Data in and output for reading or writing of binary data
LENGTH Limitation of the number of bytes to be read or written. If 0, the length of the object

addressed by PTR_DINOUT is internally determined and used as the number of
characters to be read or written

ADDR Address in the nonvolatile storage to read and write data (parameter MODE

dependent)
MODE Setting of the read or write operation to be executed: Table 13 contains a list of the

supported modes

SIZE This output states the number of written or read bytes (MODE <> 0) or the size of

the usable nonvolatile storage (MODE = 0, see text).

ERROR: The error code states information about the execution result of the function block.

Possible error codes are defined in Table 10 (they are identical to the error codes
of the NVDATA_BIT block).

DEVICE Device number, this parameter depends on the respective control.

(Note: most controls only support the device 0. Therefore, this input does not have
to be set since it is already pre-occupied with the initial value 0).

Table 13 Call Mode for the Function Block NVDATA_BIN

Mode Action

16#00 Determine the size of the usable nonvolatile storage (see text)

16#09 Read binary data from the nonvolatile storage, read data are saved in the object
addressed by PTR_DINOUT

16#89 Write binary data into the nonvolatile storage, data are taken from object addressed
by PTR_DINOUT

Description

Binary data can be written in or read from a nonvolatile storage (EEPROM, file) via the function block.
Depending on the data to be read or written, the respective mode has to be set at input MODE
according to Table 13. For this, the object addressed by parameter DINOUT is used as data source or
destination, depending on the mode. The value passed at input ADDR is the basic address for the
read or write operation to be executed. If addressing exceeds the maximum memory size, the function
block returns with a corresponding error. The PLC program is fully responsible for partitioning the
available memory and for ensuring that the value used at input ADDR does not cause overlapping of
the data to be stored. The number of read or written bytes is returned to output SIZE. This value can
then be used to calculate the next free address (ADDRnew := ADDRold + SIZE).

Input LENGTH specifies the number bytes to process. If this value is 0, the length of the object
addressed by PTR_TXDATA is internally determined and used as the number of bytes to be read or
written.

Calling the block via MODE = 0 determines the size of the usable nonvolatile storage. For this, the
remaining residual size as from the value passed at input ADDR is returned to output SIZE
(SIZE := NVDATAFullSize - ADDR). Call the block via ADDR := 0 to determine the overall size of the
nonvolatile storage.

Possible errors during execution of the function block are displayed at output ERROR and described in
Table 10 (they are identical to the error codes of the NVDATA_BIT block).

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 51

The following sample program shows the application of the function block NVDATA_BIN. At first, a
data object is written from address 30 onwards and subsequently read by the same address. Since
input DEVICE is not set by the user program, the standard setting remains the same and the block
implicitly uses the device number 0.

Sample Program

PROGRAM SaveDataBin

VAR CONSTANT
 NVDSTR_MODE_GET_SIZE : USINT := 16#00;
 NVDSTR_MODE_RD_BIN : USINT := 16#09;
 NVDSTR_MODE_WR_BIN : USINT := 16#89;

 NVDATA_ERROR_SUCCESS : USINT := 0;
 NVDATA_ERROR_HW_ERROR : USINT := 1;
 NVDATA_ERROR_UNKNOWN_DEVICE : USINT := 2;
 NVDATA_ERROR_INVALID_MODE : USINT := 4;
 NVDATA_ERROR_OUT_OF_MEM : USINT := 8;
 NVDATA_ERROR_PTR_TYPE : USINT := 16;
END_VAR

VAR
 WriteDataObject : ARRAY[0..3] OF BYTE := [16#01, 16#02, 16#03, 16#04];
 ReadDataObject : ARRAY[0..3] OF BYTE;
 Error : ARRAY[0..1] OF USINT;

 FB_NvDataBin : NVDATA_BIN;
 pDataObject : POINTER;
END_VAR

(* write a binary data object into EEPROM *)
LD &WriteDataObject
ST pDataObject

CAL FB_NvDataBin (
 PTR_DINOUT := pDataObject,
 LENGTH := 0, (* save whole object *)
 ADDR := 30,
 MODE := NVDSTR_MODE_WR_BIN
 |
 WriteDataSize := SIZE,
 Error[0] := ERROR)

(* read a binary data object from EEPROM *)
LD &ReadDataObject
ST pDataObject

CAL FB_NvDataBin (
 PTR_DINOUT := pDataObject,
 LENGTH := 0, (* read whole object *)
 MODE := NVDSTR_MODE_RD_BIN
 ADDR := 30,
 |
 ReadDataSize := SIZE,
 Error[1] := ERROR)

RET

END_PROGRAM

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 52

5 Access to Serial Interface (SIO)

5.1 Application of the Serial Interface

The serial interface enables data exchange with other devices via direct point-to-point connection. It
can, e.g., be used for data output on a printer or operation terminal control. Depending on the
hardware design of the serial interface, the data flow can be influenced by different handshake
protocols, e.g., via modem control lines (RTS, CTS, DTR, DSR) or XON/XOFF. Due to the function
blocks SIO_INIT and SIO_STATE it is possible to initialize and control the interface. Status information
can also be retrieved. With the function blocks SIO_READ_CHR and SIO_WRITE_CHR it is possible
to process single characters. With SIO_READ_STR and SIO_WRITE_STR on the other hand it is
possible to transfer character strings.

5.2 Function Block SIO_INIT

The function block SIO_INIT initializes the serial interface and sets the handshake protocol for the flow
control.

Prototype of the Function Block

 +----------------+
 | SIO_INIT |
 | |
 UDINT ---|BAUD |
 USINT ---|DATABITS |
 USINT ---|PARITY |
 USINT ---|STOPBITS |
 USINT ---|PROTOCOL |
 | |
 BOOL ---|ENABLE |
 | |
 USINT ---|PORT ERROR|--- USINT
 | |
 +----------------+

Definition of Operands

BAUD
Specification of the baud rate to be used in bps, this parameter depends on the properties of the

respective interface, valid values are, e.g.:

1200, 2400, 9600, 19200, 38400, 57600, 115200

DATABITS Specification of the number of data bits to be used, this parameter depends on the

properties of the respective interface, valid values are, e.g.:
7 = 7 data bits
8 = 8 data bits

PARITY Specification of the parity to be used for secure data transfer, this parameter

depends on the properties of the respective interface, valid values are, e.g.:
0 = no parity
1 = odd parity
2 = even parity

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 53

STOP BITS Specification of the number of stop bits to be used, this parameter depends on the
properties of the respective interface, valid values are, e.g.:
1 = 1 stop bit
2 = 2 stop bits

PROTOCOL Specification of the handshake protocols to be used, this parameter depends on

the properties of the respective interface, valid values are, e.g.:
0 = no protocol
1 = XON/XOFF
2 = hardware handshake (RTS/CTS flow control)

ENABLE Enable or disable the serial interface

TRUE = initialize the serial interface
FALSE = switch off the serial interface

PORT Number of serial interface to be used

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 14.

Table 14 Error Codes of the Function Block SIO_INIT

Error Code Definition

0 No error occurred during execution of the function block

1 Hardware error occurred during execution of the function block

2 The selected interface (PORT) is not supported

4 The selected bit rate (BAUD) is not supported

8 The selected number of data bits (DATABITS) is not supported

16 The selected parity (PARITY) is not supported

32 The selected number of stop bits is not supported

64 The selected handshake protocol is not supported

Description

The function block initializes the serial interface with the specified parameters. The actual availability
or support of parameters depends on the respective hardware properties of the interface. Please see
the respective manual of each control for more detailed information. Possible errors during execution
of the function block are displayed at output ERROR as a bit mask and described in Table 14. Due to
the simultaneous setting of various bits it is possible to signalize several errors (e.g. 136 = 128 + 8 =>
invalid bit rate and non-supported protocol).

The following sample program shows the application of the function block SIO_INIT to initialize the
serial interface with the following parameters: 9600 baud, 8 data bits, no parity, 1 stop bit, software
flow control via XON/XOFF protocol.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 54

Sample Program

VAR CONSTANT
 (* Definition of Parity Type *)
 SIO_INIT_PARITY_NO : USINT := 0;
 SIO_INIT_PARITY_ODD : USINT := 1;
 SIO_INIT_PARITY_EVEN : USINT := 2;

 (* Definition of Protocol Type *)
 SIO_INIT_PROTOCOL_NO : USINT := 0;
 SIO_INIT_PROTOCOL_XON_XOFF : USINT := 1;
 SIO_INIT_PROTOCOL_RTS_CTS : USINT := 2;

 (* Error Codes of FB SIO_INIT *)
 SIO_INIT_ERR_SUCCESS : USINT := 0;
 SIO_INIT_ERR_HW_ERROR : USINT := 1;
 SIO_INIT_ERR_INVALID_PORT : USINT := 2;
 SIO_INIT_ERR_INVALID_BAUD : USINT := 8;
 SIO_INIT_ERR_INVALID_DATABITS : USINT := 16;
 SIO_INIT_ERR_INVALID_PARITY : USINT := 32;
 SIO_INIT_ERR_INVALID_STOPBITS : USINT := 64;
 SIO_INIT_ERR_INVALID_PROTOCOL : USINT := 128;

 PORTNUM : USINT := 1;
END_VAR

VAR
 FB_SioInit : SIO_INIT;
 xInitOk : BOOL := FALSE;
END_VAR

(* ----- Init Sio ----- *)
SioInit:
(* Initialize Serial Port *)
CAL FB_SioInit (
 BAUD := 9600,
 DATABITS := 8,
 PARITY := SIO_INIT_PARITY_NO,
 STOPBITS := 1,
 PROTOCOL := SIO_INIT_PROTOCOL_XON_XOFF,
 ENABLE := TRUE,
 PORT := PORTNUM)

LD FB_SioInit.ERROR
EQ SIO_INIT_ERR_SUCCESS
ST xInitOk

...

RET

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 55

5.3 Function Block SIO_STATE

The function block SIO_SATE sets and retrieves status information of the serial interface.

Prototype of the Function Block

 +-----------------+
 | SIO_STATE |
 | |
 SINT ---|RTS CTS|--- SINT
 SINT ---|DTR DSR|--- SINT
 | DCD|--- SINT
 SINT ---|CLR RI|--- SINT
 | |
 | SORXQ|--- UDINT
 | CBRXQ|--- UDINT
 | |
 | SOTXQ|--- UDINT
 | CBTXQ|--- UDINT
 | |
 | SIOSTAT|--- INT
 | |
 USINT ---|PORT ERROR|--- USINT
 | |
 +-----------------+

Definition of Operands

RTS RTS signal status to be set:

-1 = do not influence current status
0 = set signal to inactive
1 = set signal to active

DTR DTR signal status to be set:

-1 = do not influence current status
0 = set signal to inactive
1 = set signal to active

CLR Clear send and receive buffer:

-1 = do not influence current status
1 = clear receive buffer
2 = clear send buffer
3 = clear send and receive buffer

CTS Determined CTS signal status:

-1 = signal is not supported
0 = signal is set as inactive
1 = signal is set as active

DSR Determined DSR signal status

-1 = signal is not supported
0 = signal is set as inactive
1 = signal is set as active

DCD Determined DCD signal status:

-1 = signal is not supported
0 = signal is set as inactive
1 = signal is set as active

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 56

RI Determined RI signal status:
-1 = signal is not supported
0 = signal is set as inactive
1 = signal is set as active

SORXQ Determined overall size of the receive buffer (Size of Rx Queue)

CBRXQ Current number of the characters in the receive buffer (Count of Bytes in Rx

Queue)

SOTXQ Determined overall size of the send buffer (Size of Tx Queue)

CBTXQ Current number of characters in the send buffer (Count of Bytes in Tx Queue)

SIOSTAT SIO specific status register (e.g. overrun, frame error etc.; see the manual of the

respective control)

PORT Number of serial interface to be used

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 15.

Table 15 Error Codes of the Function Block SIO_STAT

Error Code Definition

0 No error occurred during execution of the function block

1 Hardware error occurred during execution of the function block

2 The selected interface (PORT) is not supported

8 The RTS signal cannot be influenced if a hardware handshake is active (SIO_INIT
called via PROTOCOL := 2)

16 The DTR signal cannot be influenced if a hardware handshake is active (SIO_INIT
called with PROTOCOL := 2)

32 Direct setting of the RTS signal is not supported

64 Direct setting of the DTR signal is not supported

128 Clearing of the send and receive buffer is not supported

255 The selected interface (PORT) is not initialized

Description

The function block sets and retrieves status information of the serial interface. The actual availability or
support of parameters depends on the respective hardware properties of the interface. Please see the
respective manual of each control for more detailed information. Possible errors during execution of
the function block are displayed at output ERROR as a bit mask and described Table 15. Due to
simultaneous setting of various bits it is possible to signalize several errors (e.g. 24 = 16 + 8 => RTS
and DTR signals cannot be influenced during an activated hardware handshake).

The following extract from the program shows the application of the function block SIO_STAT to
determine the current status of the serial interface.
Note: See section 5.7 for the complete sample program including initialization and flow control.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 57

Sample Program

VAR CONSTANT
 (* Definition of Control Codes *)
 SIO_STAT_DO_NOT_CHANGE : SINT := -1;
 SIO_STAT_CLR : SINT := 0;
 SIO_STAT_SET : SINT := 1;

 (* Error Codes of FB SIO_STAT *)
 SIO_STAT_ERR_SUCCESS : USINT := 0;
 SIO_STAT_ERR_HW_ERROR : USINT := 1;
 SIO_STAT_ERR_INVALID_PORT : USINT := 2;
 SIO_STAT_ERR_RTS_SET_ERROR : USINT := 8;
 SIO_STAT_ERR_DTR_SET_ERROR : USINT := 16;
 SIO_STAT_ERR_RTS_NOT_SUPPORTED : USINT := 32;
 SIO_STAT_ERR_DTR_NOT_SUPPORTED : USINT := 64;
 SIO_STAT_ERR_CLR_NOT_SUPPORTED : USINT := 128;
 SIO_STAT_ERR_NOT_INITIALIZED : USINT := 255;

 PORTNUM : USINT := 1;
END_VAR

VAR
 FB_SioState : SIO_STATE;
 xStatOk : BOOL := FALSE;

 siCts : SINT;
 siDsr : SINT;
 siDcd : SINT;
 siRi : SINT;
 udiSoRrQ : UDINT;
 udiCbRxQ : UDINT;
 udiSoTxQ : UDINT;
 udiCbTxQ : UDINT;
 iSioStat : INT;
END_VAR

(* ----- Check Sio State ----- *)
CheckState:
(* read current state from serial interface *)
CAL FB_SioState (
 RTS := SIO_STAT_DO_NOT_CHANGE,
 DTR := SIO_STAT_DO_NOT_CHANGE,
 CLR := SIO_STAT_DO_NOT_CHANGE,
 PORT := PORTNUM
 |
 siCts := CTS,
 siDsr := DSR,
 siDcd := DCD,
 siRi := RI,
 udiSoRrQ := SORXQ,
 udiCbRxQ := CBRXQ,
 udiSoTxQ := SOTXQ,
 udiCbTxQ := CBTXQ,
 iSioStat := SIOSTAT)

LD FB_SioState.ERROR
EQ SIO_STAT_ERR_SUCCESS
ST xStatOk

...

RET

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 58

5.4 Function Block SIO_READ_CHR

The function block SIO_READ_CHR reads a single character from the serial interface.

Prototype of the Function Block

 +----------------+
 | SIO_READ_CHR |
 | |
 BOOL ---|ECHO RXDATA|--- USINT
 | |
 USINT ---|PORT ERROR|--- USINT
 | |
 +----------------+

Definition of Operands

ECHO Character echo on/off

FALSE = no echo
TRUE = return echo

RXDATA Received character (if ERROR := 0)

PORT Number of serial interface to be used

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 16.

Table 16 Error Codes of the Function Block SIO_READ_CHR

Error Code Definition

0 No error occurred during execution of the function block

1 Hardware error occurred during execution of the function block

2 The selected interface (PORT) is not supported

8 No character available in the receive buffer

16 A character echo is not supported

255 The selected interface (PORT) is not initialized

Description

The function block reads a single character from the serial interface. No character was available in the
receive buffer if output ERROR := 8 has been set when the block returns. The read character is
available at output RXDATA if ERROR := 0. In this case, the received character is returned by the
block as an echo if output ECHO := TRUE has been set. Possible errors during execution of the
function block are displayed at output ERROR as a bit mask and described in Table 16. Due to the
simultaneous setting of various bits it is possible to signalize several errors.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 59

Sample Program

The program extract in section 5.5 shows the joint application of SIO_READ_CHR and the function
block SIO_WRITE_CHR. At first, the sample program calls the block SIO_READ_CHR to read a
character from the interface. If this was successful, the block SIO_WRITE_CHR rewrites the character
on the same interface as an echo.
Note: See section 5.7 for the complete sample program including initialization and flow control.

5.5 Function Block SIO_WRITE_CHR

The function block SIO_WRITE_CHR writes a single character onto the serial interface.

Prototype of the Function Block

 +-----------------+
 | SIO_WRITE_CHR |
 | |
 USINT ---|TXDATA |
 | |
 BOOL ---|EXPANDCR |
 BOOL ---|EXPANDLF |
 | |
 USINT ---|PORT ERROR|--- USINT
 | |
 +-----------------+

Definition of Operands

TXDATA Input for the character to be sent

EXPANDCR Automatic expansion of the carriage return on/off

FALSE: No automatic expansion of the carriage return
TRUE: Automatic expansion of the carriage return, CR ('$R'=13) is automatically
expanded to CR+LF ('RL'=13+10)

EXPANDLF Automatic expansion of the line feed on/off

FALSE: No automatic expansion of the line feed
TRUE: Automatic expansion of the line feed, LF ('$L'=10) is automatically
expanded to CR+LF ('RL'=13+10)

PORT Number of serial interface to be used

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 17.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 60

Table 17 Error Codes of the Function Block SIO_WRITE_CHR

Error Code Definition

0 No error occurred during execution of the function block

1 Hardware error occurred during execution of the function block

2 The selected interface (PORT) is not supported

8 There is no space available in the send buffer, the character has been discarded

16 The automatic expansion of the carriage return is not supported

32 The automatic expansion of the line break is not supported

255 The selected interface (PORT) is not initialized

Description

The function block writes a single character onto the serial interface. No space was available in the
send buffer if output ERROR := 1 has been set when the block returns. Output TXDATA has
successfully written the character onto the interface if ERROR := 0. If input EXPANDCR := TRUE has
been set, a check is carried out to see whether the transmitted character corresponds to the ASCII
code for the carriage return. In this case, the block automatically expands this character to the
character string carriage return+line break. Similar to this, the block also automatically adds (internally)
a line break for the character string carriage return+line break if input EXPANDLF := TRUE has been
set. Possible errors during execution of the function block are displayed at output ERROR as a bit
mask and described in Table 17. Due to the simultaneous setting of various bits it is possible to
signalize several errors.

The following extract of the program shows the application of the function blocks SIO_READ_CHR
(see section 5.4) and SIO_WRITE_CHR to read and write characters via the serial interface. At first,
the sample program calls the block SIO_READ_CHR to read a character from the interface. If this was
successful, the block SIO_WRITE_CHR rewrites the character on the same interface as an echo.
Note: See section 5.7 for the complete sample program including initialization and flow control.

Sample Program

VAR CONSTANT
 (* Error Codes of FB SIO_READ_CHR *)
 SIO_RCHR_ERR_SUCCESS : USINT := 0;
 SIO_RCHR_ERR_HW_ERROR : USINT := 1;
 SIO_RCHR_ERR_INVALID_PORT : USINT := 2;
 SIO_RCHR_ERR_NO_CHAR : USINT := 8;
 SIO_RCHR_ERR_ECHO_NOT_SUPPORTED : USINT := 16;
 SIO_RCHR_ERR_NOT_INITIALIZED : USINT := 255;

 (* Error Codes of FB SIO_WRITE_CHR *)
 SIO_WCHR_ERR_SUCCESS : USINT := 0;
 SIO_WCHR_ERR_HW_ERROR : USINT := 1;
 SIO_WCHR_ERR_INVALID_PORT : USINT := 2;
 SIO_WCHR_ERR_TXBUFFER_OVERFLOW : USINT := 8;
 SIO_WCHR_ERR_EXCR_NOT_SUPPORTED : USINT := 16;
 SIO_WCHR_ERR_EXLF_NOT_SUPPORTED : USINT := 32;
 SIO_WCHR_ERR_NOT_INITIALIZED : USINT := 255;

 PORTNUM : USINT := 1;
END_VAR

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 61

VAR
 xEcho : BOOL := FALSE;
 FB_SioReadChr : SIO_READ_CHR;
 usiRxData : USINT;
 xRdCharSuccess : BOOL := FALSE;

 xExpandCR : BOOL := FALSE;
 xExpandLF : BOOL := FALSE;
 FB_SioWriteChr : SIO_WRITE_CHR;
 xWrCharOk : BOOL := FALSE;
END_VAR

(* ----- Read Char ----- *)
CAL FB_SioReadChr (
 ECHO := xEcho,
 PORT := PORTNUM
 |
 usiRxData := RXDATA)

(* check receive result *)
LD FB_SioReadChr.ERROR (* character received ? *)
EQ SIO_RCHR_ERR_SUCCESS
ST xRdCharSuccess
RETCN

(* ----- Write Char ----- *)
CAL FB_SioWriteChr (
 TXDATA := usiRxData,
 EXPANDCR := xExpandCR,
 EXPANDLF := xExpandLF,
 PORT := PORTNUM)

LD FB_SioWriteChr.ERROR
EQ SIO_WCHR_ERR_SUCCESS
ST xWrCharOk

...

RET

5.6 Function Block SIO_READ_STR

The function block SIO_READ_STR reads a character string from the serial interface.

Prototype of the Function Block

 +--------------------+
 | SIO_READ_STR |
 | |
 BOOL ---|ENABLE CONFIRM|--- BOOL
 | |
 STRING ---|RXDATA--------RXDATA|--- STRING
 INT ---|MAXLENGTH RXLENGTH|--- INT
 | |
 USINT ---|EOTCHR |
 BOOL ---|ECHO |
 BOOL ---|EDIT |
 | |
 USINT ---|PORT ERROR|--- USINT
 | |
 +--------------------+

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 62

Definition of Operands

RXDATA String variable for receiving the read characters
MAXLENGTH Limitation of the number of characters to be read. If the number is 0, the buffer

length of the passed string is internally determined and used as the delimiter for the
number of characters to be read (Note: the standard buffer size of a string in
OpenPCS is 32 characters).

EOTCHR Character for the string end delimiter (Default: 10='$L'), e.g.:

0 (NUL), 10 ('$L'=line break), 13 ('$R'=carriage return)

ECHO Character echo on/off

FALSE = no echo
TRUE = return echo

EDIT Edit mode on/off

FALSE = BS (8) is stored as normal character in the receive string
TRUE = BS (8) is interpreted as a correction character

RXLENGTH Length of the read character string (if ERROR := 0)

ENABLE Input for enabling or disabling the FB (see text)
CONFIRM Output for completed message via the FB (see text)

FALSE = reception not successfully completed or terminated after error
TRUE = reception successfully completed, RXLENGTH characters are available in
the receive buffer RXDATA

PORT Number of serial interface to be used

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 18.

Table 18 Error Codes of the Function Block SIO_READ_STR

Error Code Definition

0 No error occurred during execution of the function block

1 Hardware error occurred during execution of the function block

2 The selected interface (PORT) is not supported

8 No character received for the end delimiter, reception termination after
MAXLENGHTH characters

16 A character echo is not supported

32 The edit mode is not supported

255 The selected interface (PORT) is not initialized

Description

The function block reads a character string from the serial interface. The read characters are stored in
the string passed to input RXDATA. Reading of the character string is terminated if the character
defined for the end delimiter at input EOTCHR has been received, or if the string set with the
MAXLENGTH number of characters is full (if EDIT is taken into consideration; if MAXLENGTH := 0,
the buffer length of the passed string is internally determined and used as the delimiter). In both cases,
the returning block displays that reception has been completed and that the string passed to input
RXDATA contains the read character string by setting output CONFIRM to TRUE. Output RXLENGTH
shows the number of characters in the receive buffer (equals LEN(RXDATA);). If output ERROR := 0

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 63

has also been set, the character for the end delimiter defined at input EOTCHR has been received. If
ERROR := 8, reception has been terminated after reading the number of characters set as
MAXLENGTH.

The block starts character reception after detecting a rising edge at input ENABLE (first call via
ENABLE := TRUE). Repeatedly call the function block via the PLC program until character reception
(end delimiter or MAXLENGTH characters) has been terminated. For this, input ENABLE has to be set
as TRUE to enable character reception. The block signals successful termination of reception by
setting output CONFIRM to TRUE. After processing the received character string, the PLC program
has to call the block via ENABLE := FALSE to internally reset the block to its initial state. Further
characters can subsequently be received by resetting input ENABLE to TRUE and thus detecting a
rising edge. Active reception can be terminated at any time by calling the block via
ENABLE := FALSE.

The block automatically returns each received character as an echo if input ECHO := TRUE has been
set. The character backspace (BS=8) is not stored as a normal character but as a correction character
in the receive buffer if input EDIT := TRUE has been set. The last received character is thus deleted
and the number of the already received characters reported at output RXLENGTH reduced.

Possible errors during execution of the function block are displayed at output ERROR as a bit mask
and described in Table 18. Due to the simultaneous setting of various bits it is possible to signalize
several errors.

The following sample program shows the application of the function block SIO_READ_STR for reading
a character string from the serial interface.

Sample Program

The sample program in section 5.7 shows the joint application of SIO_READ_STR and the function
block SIO_WRITE_STR. At first, the sample program calls the block SIO_READ_STR to read a
character string from the interface. After the character string has been completely read, the block
SIO_WRITE_STR rewrites it onto the interface.

5.7 Function Block SIO_WRITE_STR

The function block SIO_WRITE_STR writes a character string onto the serial interface.

Prototype of the Function Block

 +---------------------+
 | SIO_WRITE_STR |
 | |
 BOOL ---|ENABLE CONFIRM|--- BOOL
 | |
 STRING ---|TXDATA---------TXDATA|--- STRING
 INT ---|TXLENGTH |
 | |
 BOOL ---|EXPANDCR |
 BOOL ---|EXPANDLF |
 BOOL ---|APPENDLF |
 | |
 USINT ---|PORT ERROR|--- USINT
 | |
 +---------------------+

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 64

Definition of Operands

TXDATA String variable with the string to be written
TXLENGTH Number of characters to be written, if the number is 0, the length of the character

string contained in the string TXDATA is internally determined (equals
LEN(TXDATA);) and used as the number of characters to be written.

EXPANDCR Automatic expansion of the carriage return on/off

FALSE: No automatic expansion of the carriage return
TRUE: Automatic expansion of the carriage return, CR ('$R'=13) is automatically
expanded to CR+LF ('RL'=13+10)

EXPANDLF Automatic expansion of the line feed on/off

FALSE: No automatic expansion of the line feed
TRUE: Automatic expansion of the line feed, LF ('$L'=10) is automatically
expanded to CR+LF ('RL'=13+10)

APPENDLF Automatic appending of the line feed on/off

FALSE: No automatic appending of the line feed
TRUE: Automatic appending of a line feed, LF ('$L'=10) is appended if
EXPANDLF:=FALSE, CR+LF ('RL'=13+10) is appended if EXPANDLF:=TRUE

ENABLE Input for enabling or disabling the FB (see text)
CONFIRM Output for completed message via the FB (see text)

FALSE = transmission not successfully completed or terminated after error
TRUE = transmission successfully completed

PORT Number of serial interface to be used

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 19.

Table 19 Error Codes of the Function Block SIO_WRITE_STR

Error Code Definition

0 No error occurred during execution of the function block

1 Hardware error occurred during execution of the function block

2 The selected interface (PORT) is not supported

16 The automatic expansion of the carriage return is not supported

32 The automatic expansion of the line break is not supported

64 The automatic attachment of the line break is not supported

255 The selected interface (PORT) is not initialized

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 65

Description

The function block writes a character string onto the serial interface. The string with the character
string to be transferred should be passed at input TXDATA. Here, input TXLENGTH specifies the
number of valid characters. If this value is 0, the length of the character string contained in string
TXDATA is internally determined (equals LEN(TXDATA);) and used as the number of characters to be
written. In this case, the entire occupied string content is written.

The block starts writing the character string after detecting a rising edge at input ENABLE (first call via
ENABLE := TRUE). Repeatedly call the function block via the PLC program until character transfer
has been completed. For this, input ENABLE has to be set as TRUE to enable character transmission.
The block automatically signals successful termination by setting output CONFIRM to TRUE. During
further processing, the PLC program has to call the block via ENABLE := FALSE to internally reset the
block to its initial state. Further character transfer can subsequently be started by resetting input
ENABLE to TRUE and thus detecting a rising edge. Active transmission can be terminated at any time
by calling the block via ENABLE := FALSE.

If input EXPANDCR := TRUE has been set, the block automatically expands (internally) each
character with the ASCII code for the carriage return to the character string carriage return+line break.
Similar to this, the block also automatically adds (internally) a line break for the character string
carriage return+line feed if input EXPANDLF := TRUE has been set. If input APPENDLF := TRUE has
been set, the block internally appends a line break after complete transfer of the character string
passed to input TXDATA. Depending on input APPENDLF, this line break is, if necessary, transferred
as a character string consisting of carriage return+line break.

Possible errors during execution of the function block are displayed at output ERROR as a bit mask
and described in Table 19. Due to the simultaneous setting of various bits it is possible to signalize
several errors.

The following sample program shows the application of the function blocks SIO_READ_STR (see
section 5.6) and SIO_WRITE_STR. At first, the block SIO_READ_STR is called to read a character
string from the interface. After the character string has been completely read, the block
SIO_WRITE_STR rewrites it onto the interface. This sample program is completed via initialization of
the serial interface and the flow control of the program execution.

Sample Program

PROGRAM SioRwStr
VAR CONSTANT

 (* Definition of specail ASCII-Codes *)
 strDollar : STRING := '$$'; (* Dollar *)
 strApostroph : STRING := '$''; (* Apostroph *)
 strLF : STRING := '$L'; (* LineFeed *)
 strCR : STRING := '$R'; (* CarriageReturn *)
 strNL : STRING := '$N'; (* NewLine *)
 strFF : STRING := '$P'; (* NewPage *)
 strTab : STRING := '$T'; (* Tabulator *)

 (* Definition of Parity Type *)
 SIO_INIT_PARITY_NO : USINT := 0;
 SIO_INIT_PARITY_ODD : USINT := 1;
 SIO_INIT_PARITY_EVEN : USINT := 2;

 (* Definition of Protocol Type *)
 SIO_INIT_PROTOCOL_NO : USINT := 0;
 SIO_INIT_PROTOCOL_XON_XOFF : USINT := 1;
 SIO_INIT_PROTOCOL_RTS_CTS : USINT := 2;

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 66

 (* Error Codes for FB SIO_INIT *)
 SIO_INIT_ERR_SUCCESS : USINT := 0;
 SIO_INIT_ERR_HW_ERROR : USINT := 1;
 SIO_INIT_ERR_INVALID_PORT : USINT := 2;
 SIO_INIT_ERR_INVALID_BAUD : USINT := 8;
 SIO_INIT_ERR_INVALID_DATABITS : USINT := 16;
 SIO_INIT_ERR_INVALID_PARITY : USINT := 32;
 SIO_INIT_ERR_INVALID_STOPBITS : USINT := 64;
 SIO_INIT_ERR_INVALID_PROTOCOL : USINT := 128;

 (* Error Codes for FB SIO_READ_STR *)
 SIO_RSTR_ERR_SUCCESS : USINT := 0;
 SIO_RSTR_ERR_HW_ERROR : USINT := 1;
 SIO_RSTR_ERR_INVALID_PORT : USINT := 2;
 SIO_RSTR_ERR_NO_EOT_CHAR : USINT := 8;
 SIO_RSTR_ERR_ECHO_NOT_SUPPORTED : USINT := 16;
 SIO_RSTR_ERR_EDIT_NOT_SUPPORTED : USINT := 32;
 SIO_RSTR_ERR_NOT_INITIALIZED : USINT := 255;

 (* Error Codes for FB SIO_WRITE_STR *)
 SIO_WSTR_ERR_SUCCESS : USINT := 0;
 SIO_WSTR_ERR_HW_ERROR : USINT := 1;
 SIO_WSTR_ERR_INVALID_PORT : USINT := 2;
 SIO_WSTR_ERR_TXBUFFER_OVERFLOW : USINT := 8;
 SIO_WSTR_ERR_EXCR_NOT_SUPPORTED : USINT := 16;
 SIO_WSTR_ERR_EXLF_NOT_SUPPORTED : USINT := 32;
 SIO_WSTR_ERR_APLF_NOT_SUPPORTED : USINT := 64;
 SIO_WSTR_ERR_NOT_INITIALIZED : USINT := 255;

 PORTNUM : USINT := 1;

END_VAR

VAR

 FB_SioInit : SIO_INIT;
 xInitDone : BOOL := FALSE;

 strRxText : STRING(32); (* set string length := 32 *)
 usiEotChr : USINT := 16#0D; (* ==> '$R' = CR *)
 xEcho : BOOL := TRUE;
 xEdit : BOOL := TRUE;
 FB_SioReadStr : SIO_READ_STR;
 iRxDataSize : INT;
 xRdStrConfirm : BOOL := FALSE;
 xWaitForReceipt : BOOL := FALSE;

 strTxText : STRING;
 xExpandCR : BOOL := TRUE;
 xExpandLF : BOOL := FALSE;
 xAppendLF : BOOL := TRUE;
 FB_SioWriteStr : SIO_WRITE_STR;
 xWrStrConfirm : BOOL := FALSE;
 xTransmitting : BOOL := FALSE;

END_VAR

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 67

LD xTransmitting
JMPC WriteStringCont
LD xRdStrConfirm
JMPC WriteStringStart
LD xWaitForReceipt
JMPC ReadStringCont
LD xInitDone
JMPC ReadStringStart

(* ----- Init Sio ----- *)
SioInit:
CAL FB_SioInit (
 BAUD := 9600,
 DATABITS := 8,
 PARITY := SIO_INIT_PARITY_NO,
 STOPBITS := 1,
 PROTOCOL := SIO_INIT_PROTOCOL_NO,
 ENABLE := TRUE,
 PORT := PORTNUM)

LD FB_SioInit.ERROR
EQ SIO_INIT_ERR_SUCCESS
RETCN
LD TRUE
ST xInitDone

(* ----- Read String ----- *)
ReadStringStart:
CAL FB_SioReadStr (
 ENABLE := FALSE, (* Step 1: Reset FB *)
 RXDATA := strRxText,
 PORT := PORTNUM)

LD FB_SioReadStr.ERROR
EQ SIO_RSTR_ERR_SUCCESS
RETCN
LD TRUE
ST xWaitForReceipt

ReadStringCont:
CAL FB_SioReadStr (
 ENABLE := TRUE, (* Step 2: Start FB *)
 RXDATA := strRxText,
 MAXLENGTH := 0, (* no limit, use whole string length *)
 EOTCHR := usiEotChr,
 ECHO := xEcho,
 EDIT := xEdit,
 PORT := PORTNUM
 |
 xRdStrConfirm := CONFIRM,
 iRxDataSize := RXLENGTH)

LD xRdStrConfirm
RETCN

LD strCR
CONCAT '-> '
CONCAT strRxText
ST strTxtext

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 68

(* ----- Write String ----- *)
WriteStringStart:
CAL FB_SioWriteStr (
 ENABLE := FALSE, (* Step 1: Reset FB *)
 TXDATA := strTxText,
 PORT := PORTNUM)

LD FB_SioWriteStr.ERROR
EQ SIO_WSTR_ERR_SUCCESS
RETCN
LD TRUE
ST xTransmitting

WriteStringCont:
CAL FB_SioWriteStr (
 ENABLE := TRUE, (* Step 2: Start FB *)
 TXDATA := strTxText,
 TXLENGTH := 0, (* no limit, transmit whole string *)
 EXPANDCR := xExpandCR,
 EXPANDLF := xExpandLF,
 APPENDLF := xAppendLF,
 PORT := PORTNUM
 |
 xWrStrConfirm := CONFIRM)

LD xWrStrConfirm
RETCN

(* ----- Reset Flow Control Logic ----- *)
LD FALSE
ST xTransmitting
ST xWrStrConfirm
ST xWaitForReceipt
ST xRdStrConfirm
RET

END_PROGRAM

5.8 Function Block SIO_READ_BIN

The function block SIO_READ_BIN reads a binary character stream from the serial interface.

Prototype of the Function Block

 +--------------------+
 | SIO_READ_BIN |
 | |
 BOOL ---|ENABLE CONFIRM|--- BOOL
 | |
 POINTER ---|PTR_RXDATA |
 INT ---|MAXLENGTH RXLENGTH|--- INT
 | |
 USINT ---|ETXCHR |
 BOOL ---|CHKETX |
 | |
 USINT ---|PORT ERROR|--- USINT
 | |
 +--------------------+

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 69

Definition of Operands

PTR_RXDATA Address of an object for receiving the read data bytes
MAXLENGTH Limitation of number of bytes to read, if 0, the length of the object addressed by

PTR_RXDATA is internally determined and used as the number of bytes to be read
(there are max. read so much bytes as the object can take up)

EOTCHR Character for the end delimiter of the binary character stream (only checked if

CHKETX = TRUE)
CHKETX Check of end delimiter character on/off

FALSE = end delimiter character is not checked
TRUE = check for end delimiter character is activated

RXLENGTH Number of the read character (if ERROR := 0)

ENABLE Input for enabling or disabling the FB (see text)
CONFIRM Output for completed message via the FB (see text)

FALSE = reception not successfully completed or terminated after error
TRUE = reception successfully completed, RXLENGTH characters are available in
the object addressed by PTR_RXDATA

PORT Number of serial interface to be used

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 20.

Table 20 Error Codes of the Function Block SIO_READ_BIN

Error Code Definition

0 No error occurred during execution of the function block

1 Hardware error occurred during execution of the function block

2 The selected interface (PORT) is not supported

8 No character received for the end delimiter, reception termination after
MAXLENGHTH characters

128 Pointer references an object of an unsupported data type

255 The selected interface (PORT) is not initialized

Description

The function block reads a binary data stream from the serial interface. The read characters are stored
in the object addressed by input PTR_RXDATA. If input CHKETX is set to TRUE, the data stream
read from serial interface is checked for the occurrence of the end delimiter character defined at input
EOTCHR. On recognition of the defined end delimiter character the reading operations finishes and
the function block returns with output CONFIRM set to TRUE. If either input CHKETX is set to FALSE
or the defined end delimiter character doesn't occur in the read binary stream, the the function block
stops reading operation if the maximum number of bytes has been received (either internal size of
data object addressed by PTR_RXDATA or MAXLENGTH characters). Also in this case the output
CONFIRM is set to TRUE if the function block returns.

Output RXLENGTH shows the number of characters stored in the data object addressed by
PTR_RXDATA. If output ERROR := 0 has also been set, the character for the end delimiter defined at
input EOTCHR has been received. If ERROR := 8, reception has been terminated after reading the
maximum number of characters.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 70

The block starts character reception after detecting a rising edge at input ENABLE (first call via
ENABLE := TRUE). Repeatedly call the function block via the PLC program until character reception
(end delimiter or MAXLENGTH characters) has been terminated. For this, input ENABLE has to be set
as TRUE to enable character reception. The block signals successful termination of reception by
setting output CONFIRM to TRUE. After processing the received character string, the PLC program
has to call the block via ENABLE := FALSE to internally reset the block to its initial state. Further
characters can subsequently be received by resetting input ENABLE to TRUE and thus detecting a
rising edge. Active reception can be terminated at any time by calling the block via
ENABLE := FALSE.

Possible errors during execution of the function block are displayed at output ERROR as a bit mask
and described in Table 18. Due to the simultaneous setting of various bits it is possible to signalize
several errors.

The following sample program shows the application of the function block SIO_READ_BIN for reading
a character string from the serial interface.

Sample Program

The sample program in section 5.9 shows the joint application of SIO_READ_BIN and the function
block SIO_WRITE_BIN. At first, the sample program calls the block SIO_READ_BIN to read a binary
character stream from the interface. After the character stream has been completely read, the function
block SIO_WRITE_BIN rewrites it onto the interface.

5.9 Function Block SIO_WRITE_BIN

The function block SIO_WRITE_BIN writes a binary character stream onto the serial interface.

Prototype of the Function Block

 +---------------------+
 | SIO_WRITE_BIN |
 | |
 BOOL ---|ENABLE CONFIRM|--- BOOL
 | |
 POINTER ---|PTR_TXDATA |
 INT ---|TXLENGTH |
 | |
 | |
 USINT ---|PORT ERROR|--- USINT
 | |
 +---------------------+

Definition of Operands

PTR_TXDATA Address of an object with the binary data to be sent
TXLENGTH Number of data bytes to be sent, if the number is 0, the length of the object

addressed by PTR_TXDATA is internally determined and used as the number of
characters to be sent

ENABLE Input for enabling or disabling the FB (see text)
CONFIRM Output for completed message via the FB (see text)

FALSE = transmission not successfully completed or terminated after error
TRUE = transmission successfully completed

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 71

PORT Number of serial interface to be used

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 21.

Table 21 Error Codes of the Function Block SIO_WRITE_BIN

Error Code Definition

0 No error occurred during execution of the function block

1 Hardware error occurred during execution of the function block

2 The selected interface (PORT) is not supported

128 Pointer references an object of an unsupported data type

255 The selected interface (PORT) is not initialized

Description

The function block writes a binary character stream onto the serial interface. The address of an object
with the binary data to be written has to be transferred to input PTR_TXDATA. Input TXLENGTH
specifies the number of valid bytes. If this value is 0, the length of the object addressed by
PTR_TXDATA is internally determined and used as the number of bytes to be written.

The block starts writing the character string after detecting a rising edge at input ENABLE (first call via
ENABLE := TRUE). Repeatedly call the function block via the PLC program until character transfer
has been completed. For this, input ENABLE has to be set as TRUE to enable character transmission.
The block automatically signals successful termination by setting output CONFIRM to TRUE. During
further processing, the PLC program has to call the block via ENABLE := FALSE to internally reset the
block to its initial state. Further character transfer can subsequently be started by resetting input
ENABLE to TRUE and thus detecting a rising edge. Active transmission can be terminated at any time
by calling the block via ENABLE := FALSE.

Possible errors during execution of the function block are displayed at output ERROR as a bit mask
and described in Table 21. Due to the simultaneous setting of various bits it is possible to signalize
several errors.

The following sample program shows the application of the function blocks SIO_READ_BIN (see
section 5.8) and SIO_WRITE_BIN. At first, the block SIO_READ_BIN is called to read a binary
character stream from the interface. After the character stream has been completely read, the function
block SIO_WRITE_BIN rewrites it onto the interface. This sample program is completed via
initialization of the serial interface and the flow control of the program execution.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 72

Sample Program

PROGRAM SioRwBin
VAR CONSTANT

 (* Definition of Parity Type *)
 SIO_INIT_PARITY_NO : USINT := 0;
 SIO_INIT_PARITY_ODD : USINT := 1;
 SIO_INIT_PARITY_EVEN : USINT := 2;

 (* Definition of Protocol Type *)
 SIO_INIT_PROTOCOL_NO : USINT := 0;
 SIO_INIT_PROTOCOL_XON_XOFF : USINT := 1;
 SIO_INIT_PROTOCOL_RTS_CTS : USINT := 2;

 (* Error Codes for FB SIO_INIT *)
 SIO_INIT_ERR_SUCCESS : USINT := 0;
 SIO_INIT_ERR_HW_ERROR : USINT := 1;
 SIO_INIT_ERR_INVALID_PORT : USINT := 2;
 SIO_INIT_ERR_INVALID_BAUD : USINT := 8;
 SIO_INIT_ERR_INVALID_DATABITS : USINT := 16;
 SIO_INIT_ERR_INVALID_PARITY : USINT := 32;
 SIO_INIT_ERR_INVALID_STOPBITS : USINT := 64;
 SIO_INIT_ERR_INVALID_PROTOCOL : USINT := 128;

 (* Error Codes for FB SIO_READ_BIN *)
 SIO_RBIN_ERR_SUCCESS : USINT := 0;
 SIO_RBIN_ERR_HW_ERROR : USINT := 1;
 SIO_RBIN_ERR_INVALID_PORT : USINT := 2;
 SIO_RBIN_ERR_NO_EOT_CHAR : USINT := 8;
 SIO_RBIN_ERR_ECHO_NOT_SUPPORTED : USINT := 16;
 SIO_RBIN_ERR_EDIT_NOT_SUPPORTED : USINT := 32;
 SIO_RBIN_ERR_PTR_TYPE : USINT := 128;
 SIO_RBIN_ERR_NOT_INITIALIZED : USINT := 255;

 (* Error Codes for FB SIO_WRITE_BIN *)
 SIO_WBIN_ERR_SUCCESS : USINT := 0;
 SIO_WBIN_ERR_HW_ERROR : USINT := 1;
 SIO_WBIN_ERR_INVALID_PORT : USINT := 2;
 SIO_WBIN_ERR_TXBUFFER_OVERFLOW : USINT := 8;
 SIO_WBIN_ERR_PTR_TYPE : USINT := 128;
 SIO_WBIN_ERR_NOT_INITIALIZED : USINT := 255;

 PORTNUM : USINT := 1;

END_VAR

VAR

 FB_SioInit : SIO_INIT;
 xInitDone : BOOL := FALSE;

 abDataBuffer : ARRAY[0..127] OF BYTE;
 pDataObject : POINTER;

 FB_SioReadBin : SIO_READ_BIN;
 iRxDataSize : INT;
 xRdBinConfirm : BOOL := FALSE;
 xWaitForReceipt : BOOL := FALSE;

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 73

 FB_SioWriteBin : SIO_WRITE_BIN;
 xWrBinConfirm : BOOL := FALSE;
 xTransmitting : BOOL := FALSE;

END_VAR

LD xTransmitting
JMPC WriteBinCont
LD xRdBinConfirm
JMPC WriteBinStart
LD xWaitForReceipt
JMPC ReadBinCont
LD xInitDone
JMPC ReadBinStart

(* ----- Init Sio ----- *)
SioInit:
CAL FB_SioInit (
 BAUD := 9600,
 DATABITS := 8,
 PARITY := SIO_INIT_PARITY_NO,
 STOPBITS := 1,
 PROTOCOL := SIO_INIT_PROTOCOL_NO,
 ENABLE := TRUE,
 PORT := PORTNUM)

LD FB_SioInit.ERROR
EQ SIO_INIT_ERR_SUCCESS
RETCN

LD &abDataBuffer
ST pDataObject

LD TRUE
ST xInitDone

(* ----- Read Binary Data Stream ----- *)
ReadBinStart:
CAL FB_SioReadBin (
 ENABLE := FALSE, (* Step 1: Reset FB *)
 PORT := PORTNUM)

LD FB_SioReadBin.ERROR
EQ SIO_RBIN_ERR_SUCCESS
RETCN
LD TRUE
ST xWaitForReceipt

ReadBinCont:
CAL FB_SioReadBin (
 ENABLE := TRUE, (* Step 2: Start FB *)
 PTR_RXDATA := pDataObject,
 MAXLENGTH := 0, (* no limit, use whole object size *)
 CHKETX := FALSE,
 PORT := PORTNUM
 |
 xRdBinConfirm := CONFIRM,
 iRxDataSize := RXLENGTH)

LD xRdBinConfirm
RETCN

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 74

(* ----- Write Binary Data Stream ----- *)
WriteBinStart:
CAL FB_SioWriteBin (
 ENABLE := FALSE, (* Step 1: Reset FB *)
 PORT := PORTNUM)

LD FB_SioWriteBin.ERROR
EQ SIO_WBIN_ERR_SUCCESS
RETCN
LD TRUE
ST xTransmitting

WriteBinCont:
CAL FB_SioWriteBin (
 ENABLE := TRUE, (* Step 2: Start FB *)
 PTR_TXDATA := pDataObject,
 TXLENGTH := 0, (* no limit, transmit whole object data *)
 PORT := PORTNUM
 |
 xWrBinConfirm := CONFIRM)

LD xWrBinConfirm
RETCN

(* ----- Reset Flow Control Logic ----- *)
LD FALSE
ST xTransmitting
ST xWrBinConfirm
ST xWaitForReceipt
ST xRdBinConfirm
RET

END_PROGRAM

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 75

6 Access to Hardware Counter

6.1 Application of Hardware Counters

Hardware counters enable the recording of fast, digital signals whose period duration is smaller than
the cycle time of the PLC program. Therefore, hardware counters can also recognize and register fast
consecutive signal changes. In contrast to hardware counters, software counters, e.g. the standard
function blocks CTU, CTD and CTUD, only allow the processing of input signals whose change speed
is larger than the cycle time of the PLC program. The function block CNT_FUD (Counter for Fast Up
Down) enables the configuration of hardware counters for various operating modes
(incrementing/reverse counters, counting of rising, falling or of both edges, etc.). At the same time, the
block can retrieve current counter readings as well as check whether the limit value has been
exceeded in either direction.

6.2 Function Block CNT_FUD

The function block CNT_FUD configures the operating mode (counter direction, count edge), retrieves
the counter value and checks whether the limit value has been exceeded in either direction.

Prototype of the Function Block

 +--------------+
 | CNT_FUD |
 | |
 USINT ---|MODE |
 | |
 BOOL ---|RESET QU |--- BOOL
 BOOL ---|LOAD QD |--- BOOL
 DINT ---|PV CV |--- DINT
 | |
 USINT ---|CHANNEL ERROR|--- USINT
 | |
 +--------------+

Definition of Operands

MODE Mode selection for the selected channel, the range of values depends on the

modes supported by the hardware

0 = disabling of the selected channel, the outputs are reset

Incrementing/Reverse counter, software-controlled:
1 = incrementing counter, rising edge
2 = incrementing counter, falling edge
3 = incrementing counter, both edges

4 = reverse counter, rising edge
5 = reverse counter, falling edge
6 = reverse counter, both edges

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 76

 Incrementing/Reverse counter, hardware-controlled:
7 = rising edge
8 = falling edge
9 = both edges
Direction control occurs via the respective digital control input:
Control input = 0 incrementing counter
Control input = 1 reverse counter

Incrementing/Reverse counter, hardware-controlled:
10 = rising edge
11 = falling edge
12 = both edges
Direction control occurs via the respective digital control input:
Control input = 0 reverse counter
Control input = 1 incrementing counter

RESET The input value TRUE results in the internal counter being reset to zero. The inputs

LOAD and PV do not have any influence. No counter pulses are processed as long
as the input has the value TRUE. The block changes to the mode selected at input
MODE if the edge is falling.

LOAD The input value TRUE results in the initial value specified at input PV being passed

into the counter

PV The value specified at the input is passed to the counter via LOAD = TRUE. Due to

the resulting parity of the current counter reading and the PV, the output QU is set
to TRUE

CHANNEL Channel number of the counter

QU TRUE: The achieved counter reading is larger than or equal to PV

QD TRUE: The achieved counter reading is smaller than or equal to zero

CV Current counter reading

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 22.

Table 22 Error Codes of the Function Block CNT_FUD

Error Code Definition

0 No error occurred during execution of the function block

1 Hardware error occurred during execution of the function block

2 The selected channel (CHANNEL) is not supported

4 The selected mode (MODE) is not supported

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 77

Description

The function block configures the mode (counter direction, counting edge, hard or software control),
retrieves the counter reading and checks whether the limit value has been exceeded in either
direction. The usable block modes depend on the support of the hardware in use. Please see the
respective manual of each control for more detailed information.

Selection of the respective mode occurs via input MODE. This also includes configuration of the
counter direction (incrementing/reverse counter) and the count edges to be processed (rising, falling or
both edges). Depending on the hardware in use, it is also possible to use a further digital input for the
conversion of the counter direction. This input then functions as the control input for the counter.

Via the inputs LOAD and RESET the counter can be set to any start value or the current counter
reading can be cleared. The internal counter accepts the start value specified at input PV as the new
counter value if the function block is called via input LOAD, which has been set to TRUE. The internal
counter reading is reset to zero by calling the function block via input RESET, which has been set to
TRUE. The state of input LOAD and PV is discarded. No counter pulses are processed as long as
input RESET has the value TRUE. The block changes to the mode selected at input MODE if the edge
is falling.

The function block output CV states the current counter reading. If a set output displays QU := TRUE,
the achieved counter reading is larger than or equal to PV (overflow). If a set output displays
QD := TRUE, the achieved counter reading is smaller than or equal to zero. Both outputs QU and QV
are inactive if the current counter value CV is in the interval 0 < CV < PV.

A specific digital counter input is allocated to each counter channel (please see the manual of the
respective control for more information). Depending on the configured mode (input MODE), the
selection of the counter direction is either implicit, prefixed by the selected mode (software-controlled,
MODE := 1...6) or flexible to the runtime via the second digital control input (hardware-controlled,
MODE := 7...12). This has to be considered when using the digital inputs. The current values of the
digital counter input as well as, if necessary, of the control input are always stored in the process
image of the digital inputs irrespective of the selected counter mode.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 78

Signal

RESET

LOAD

PV

CV

QD

QU

20
30

40

40

30

0
1

2
3

4

0

1

1

1

0

0

1
0

Figure 2: Signal run of the outputs of an incrementing counter

Figure 2: Signal run of the outputs of an incrementing counter
 illustrates the runs of the individual signals of an incrementing counter (MODE := 1, count rising
edge). The inputs LOAD and PV are not considered and the outputs are inactive if RESET := TRUE is
active. The selected mode is set and the counter value CV is reset to zero if the edge is falling at input
RESET. The value at input PV is passed to CV as the start value if LOAD := TRUE is active. Output
QD changes to TRUE as soon as the counter reading is smaller than or equal to zero. Output QU
changes to TRUE as soon as the counter reading is larger than or equal to PV.

Sample Program

PROGRAM CntDemo

VAR CONSTANT

 (* Error Codes of FB CNT_FUD *)
 CNT_FUD_ERROR_SUCCESS : USINT := 0;
 CNT_FUD_ERROR_HW_ERROR : USINT := 1;
 CNT_FUD_ERROR_UNKNOWN_CHANNEL : USINT := 2;
 CNT_FUD_ERROR_INVALID_MODE : USINT := 4;

END_VAR

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 79

VAR
 xOvflUp : BOOL;
 xOvflDwn : BOOL;

 usiProcState : USINT := 0;
 ausiError : ARRAY[0..3] OF USINT;

 FB_CntFUD : CNT_FUD;
END_VAR

(* ----- Select current program step ----- *)
LD usiProcState
EQ 0
JMPC CounterInit
LD usiProcState
EQ 1
JMPC CounterRead
LD 0
ST usiProcState

(* ----- Init Counter ----- *)
CounterInit:
CAL CntFUD ((* Reset Counter *)
 CHANNEL := 0,
 RESET := TRUE
 |
 ausiError[0] := ERROR)

CAL CntFUD ((* Set Mode and StartValue *)
 MODE := 1,
 RESET := FALSE,
 LOAD := TRUE,
 PV := 30
 |
 ausiError[1] := ERROR)

CAL CntFUD ((* Clear Input LOAD to start Counter *)
 LOAD := FALSE
 |
 ausiError[2] := ERROR)

LD usiProcState
ADD 1
ST usiProcState
JMP ProgExit

(* ----- Read Counter Value ----- *)
CounterRead:
CAL CntFUD (
 PV := 40
 |
 xOvflUp := QU,
 xOvflDwn := QD,
 ausiError[3] := ERROR)

(* ----- Cycle End ----- *)
ProgExit:
RET

RET

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 80

7 Access to Real Time Clock (RTC)

7.1 Application of the Real Time Clock (RTC)

The RTC is a special battery-powered hardware block which can operate even when the PLC is
switched off. However, very few control units have such a block. The RTC provides a PLC program
with the absolute time and current date. This information can, for example, be used to control date and
time-dependent processes as well as to log events with a time stamp.

The RTC can be set and the date and time retrieved via the function block DT_CLOCK (see section
7.2). The date and time are available at the outputs in absolute form (year/month/day,
hour/minute/second) as well as in relative form (seconds since 01.01.1980). The function block
DT_ABS_TO_REL converts the absolute time and date into the corresponding relative presentation
(see section 7.3). The relative presentation simplifies arithmetic operations, e.g. the calculation of time
differences or setting of a new switch time to easy subtraction or addition of integer UDINT variables. If
required, the function block DT_REL_TO_ABS subsequently converts the calculated result back into
the absolute form (see section 7.4).

7.2 Function Block DT_CLOCK

The function block DT_CLOCK sets the RTC and reads the date and time from the PLC’s RTC. This
block is only available on controls which are equipped with an RTC block.

Prototype of the Function Block

 +------------------+
 | DT_CLOCK |
 | |
 UINT ---|SET_YEAR YEAR|--- UINT
 USINT ---|SET_MONTH MONTH|--- USINT
 USINT ---|SET_DAY DAY|--- USINT
 USINT ---|SET_HOUR HOUR|--- USINT
 USINT ---|SET_MINUTE MINUTE|--- USINT
 USINT ---|SET_SECOND SECOND|--- USINT
 | |
 | RELTIME|--- UDINT
 BOOL ---|SET ERROR|--- USINT
 | |
 | |
 +------------------+

Definition of Operands

SET_YEAR
SET_MONTH
SET_DAY year/month/day of the date to be set

SET_HOUR
SET_MINUTE
SET_SECOND hour/minute/second of the time to be set

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 81

SET TRUE: The date at inputs SET_YEAR, SET_MONTH and SET_DAY as well as the
time at inputs SET_HOUR, SET_MINUTE and SET_SECOND are written in the
RTC when the block is called. At the same time, the set date and time can be read
at the respective outputs.

FALSE: Only the current time and date from the RTC are read when the block is
called. The RTC is not reset.

YEAR
MONTH
DAY year/month/day of the read date

HOUR
MINUTE
SECOND hour/minute/second of the read time

RELTIME Relative form of the read date and time (seconds since 01.01.1980)

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 23.

Table 23 Error Codes of the Function Block DT_Xxx

Error Code Definition

0 No error occurred during execution of the function block

1 Hardware error occurred during execution of the function block

4 Invalid mode (MODE) during function block call

8 Power failure, read time is invalid (see text)

16 Passed absolute time and date are invalid

Description

If the function block is called via input SET which has been set to TRUE, the date (SET_YEAR,
SET_MONTH and SET_DAY) and time (SET_HOUR, SET_MINUTE and SET_SECOND) at the
respective inputs are passed to the PLC’s RTC. At the same time, the set date and time set can be
read at the respective outputs. However, if the function block is called via input SET which has been
set to FALSE, only the current date and time are read but the RTC is not influenced. The values of the
set inputs are discarded. Possible errors during execution of the function block are displayed at output
ERROR and described in Table 23.

If the output is ERROR = 3 after execution of the function block DT_CLOCK, the power supply of the
RTC has been interrupted (power failure, battery empty) and the read time is invalid. This error state
remains until the PLC’s RTC is reset (function block call via input SET := TRUE) or the PLC is reset
via the reset switch.

The following sample program shows the application of the function block DT_CLOCK for setting and
reading the RTC.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 82

Sample Program

PROGRAM RtcTest

VAR
 Year : UINT;
 Month : USINT;
 Day : USINT;
 Hour : USINT;
 Minute : USINT;
 Second : USINT;
 RelTime : UDINT;

 ErrorCode : ARRAY [0..1] OF USINT;

 FB_DtClock : DT_CLOCK;
END_VAR

LD 0
ST ErrorCode[0]
ST ErrorCode[1]

(* setup RTC with new time/date *)
CAL FB_DtClock (
 SET_YEAR := 2003,
 SET_MONTH := 8,
 SET_DAY := 6,
 SET_HOUR := 12,
 SET_MINUTE := 3,
 SET_SECOND := 0,
 SET := TRUE
 |
 Error[0] := ERROR)

(* read absolute and relative time from RTC *)
CAL FB_DtClock (SET :=FALSE)

LD FB_DtClock.YEAR
ST Year
LD FB_DtClock.MONTH
ST Month
LD FB_DtClock.DAY
ST Day
LD FB_DtClock.HOUR
ST Hour
LD FB_DtClock.MINUTE
ST Minute
LD FB_DtClock.SECOND
ST Second
LD FB_DtClock.RELTIME
ST RelTime
LD FB_DtClock.ERROR
ST ErrorCode[1]

RET

END_PROGRAM

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 83

7.3 Function Block DT_ABS_TO_REL

The function block DT_ABS_TO_REL converts an absolute time and date into the corresponding
relative presentation (seconds since 01.01.1980). The relative presentation simplifies arithmetic
operations, e.g. the calculation of time differences or setting of a new switch time to easy subtraction
or addition of integer UDINT variables.

Prototype of the Function block

 +-----------------+
 | DT_ABS_TO_REL |
 | |
 UINT ---|YEAR |
 USINT ---|MONTH |
 USINT ---|DAY |
 USINT ---|HOUR |
 USINT ---|MINUTE |
 USINT ---|SECOND |
 | |
 | RELTIME|--- UDINT
 | ERROR|--- USINT
 | |
 +-----------------+

Definition of Operands

YEAR
MONTH
DAY year/month/day of the date to be converted

HOUR
MINUTE
SECOND hour/minute/second of the time to be converted

RELTIME Relative form of the converted date and time (seconds since 01.01.1980)

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 23.

Description

If the function block is called, the date (YEAR, MONTH and DAY) and time (HOUR, MINUTE and
SECOND) at the respective inputs are converted from the absolute time and date to the respective
relative presentation (seconds since 01.01.1980). The relative presentation simplifies arithmetic
operations, e.g. the calculation of time differences or setting of a new switch time to easy subtraction
or addition of integer UDINT variables. If required, the function block DT_REL_TO_ABS subsequently
converts the calculated result back into the absolute form (see section 7.4). Possible errors during
execution of the function block are displayed at output ERROR and described in Table 23.

Sample Program

PROGRAM DtConv1

VAR
 RelTime : UDINT;
 ErrorCode : USINT;

 FB_DtAbsToRel : DT_ABS_TO_REL;
END_VAR

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 84

CAL FB_DtAbsToRel(
 YEAR := 2003,
 MONTH := 7,
 DAY := 23,
 HOUR := 15,
 MINUTE := 10,
 SECOND := 20
 |
 Error := ERROR)

LD FB_DtAbsToRel.RELTIME
ST RelTime
RET

END_PROGRAM

7.4 Function Block DT_REL_TO_ABS

The function block DT_REL_TO_ABS converts a relative time and date (seconds since 01.01.1980)
into the respective absolute form (year/month/day, hour/minute/second).

Prototype of the Function block

 +-----------------+
 | DT_REL_TO_ABS |
 | |
 UDINT ---|RELTIME YEAR|--- UINT
 | MONTH|--- USINT
 | DAY|--- USINT
 | HOUR|--- USINT
 | MINUTE|--- USINT
 | SECOND|--- USINT
 | |
 +-----------------+

Definition of Operands

RELTIME Relative form of the date and time to be converted (seconds since 01.01.1980)

YEAR
MONTH
DAY year/month/day of the converted date

HOUR
MINUTE
SECOND hour/minute/second of the converted time

Description

If the function block is called, the relative time at input RELTIME (seconds since 01.01.1980) is
converted into the corresponding absolute presentation and made available at the respective outputs
for date (YEAR, MONTH and DAY) and time (HOUR, MINUTE and SECOND). The function block
DT_ABS_TO_REL calculates a relative time and date from the absolute form (see section 7.3).

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 85

Sample Program

PROGRAM DtConv2

VAR
 Year : UINT;
 Month : USINT;
 Day : USINT;
 Hour : USINT;
 Minute : USINT;
 Second : USINT;

 RelTime : UDINT := 743440220; (* = 23.07.2003, 15:10:20 *)

 FB_DtRelToAbs : DT_REL_TO_ABS;
END_VAR

CAL FB_DtRelToAbs (RELTIME := RelTime)

LD FB_DTRelToAbs.YEAR
ST Year
LD FB_DTRelToAbs.MONTH
ST Month
LD FB_DTRelToAbs.DAY
ST Day
LD FB_DTRelToAbs.HOUR
ST Hour
LD FB_DTRelToAbs.MINUTE
ST Minute
LD FB_DTRelToAbs.SECOND
ST Second

RET

END_PROGRAM

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 86

8 Access to the Pulse Generator (PWM/PTO)

8.1 Application of the Pulse Generator (PTO/PWM)

The pulse generator (PTO = Pulse Timer Output / PWM = Pulse Width Modulation) enables the
generation of one-time pulse trains (PTO mode) as well as continuous pulse trains (PWM mode).
Examples of application are the low-loss power control of ohmic loads such as heating rods or lamps
(PWM mode) as well as the control of stepper motors with single pulse trains (PTO mode). The
function block PTO_PWM enables the application of pulse generators in PTO and PWM mode with
direct generator parameterization. The function block PTO_TAB enables the definition of complex
single impulse trains as a parameter table which is, e.g., required for the realization of ramp functions
for stepper motor control.

=(CT+n*Delta)*

0.5*

...

tB

tB

...

PTO
Output

1

0

t

T0

T0

=(CT+n*Delta)*

0.5*

tBT

T1

Delta

=(CT+n*Delta)* tBTn1

0.5*Tn

n = 0 n = 1 n = PC

Figure 3: Runtime performance of the pulse generator in PTO mode

CT *

PT *

...

tB

tB

tB

PT * tB PT * tB

CT * tB CT * tB

...

PWM
Output

1

0

t
Figure 4: Runtime performance of the pulse generator in PWM mode

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 87

Figure 3: Runtime performance of the pulse generator in PTO mode
 illustrates the runtime performance of the pulse generator in PTO mode and Figure 4: Runtime
performance of the pulse generator in PWM mode
 displays the run-time performance of the pulse generator in PWM mode.

8.2 Function Block PTO_PWM

The function block PTO_PWM directly parameterizes the pulse generator in PTO (pulse train output)
and PWM mode (pulse duration output). This block is only available for controls which have PWM
outputs.

Prototype of the Function block

 +-----------------+
 | PTO_PWM |
 | |
 BOOL ---|ENABLE READY|--- BOOL
 | BUSY|--- BOOL
 BOOL ---|PTO_MODE |
 BOOL ---|APPEND |
 | |
 USINT ---|TB_IDX |
 UINT ---|CT |
 UINT ---|PT |
 INT ---|DELTA |
 UDINT ---|PC |
 | |
 USINT ---|CHANNEL ERROR|--- USINT
 | |
 +-----------------+

Definition of Operands

PTO_MODE Mode selection

TRUE = PTO generator (pulse counter output, one-time pulse train)
FALSE = PWM generator (pulse duration output, continuous pulse train)
Mode input change at input ENABLE := TRUE results in the termination of the
previously set function

APPEND Control input for appending a parameter set

TRUE = the currently configured parameters are accepted as a further parameter
set
FALSE = only the block’s status outputs are updated, the configured parameters
are discarded

TB_IDX Index for setting the base cycle for the pulse generator, this parameter depends on

the properties of the respective control, valid values are, e.g.:
0 = 800ns base cycle
1 = 1ms base cycle
The base cycle is only accepted with the rising edge at input ENABLE.

CT PTO mode: Period duration

PWM mode: Cycle time
Period duration or cycle time depend on the specified base cycle at input TB_IDX
TB_IDX := 0 : 125 ... 65535 (100µs - 52428 µs)
TB_IDX := 1 : 2 ... 65535 (2ms - 65535ms)

PT PTO mode: Not used

PWM mode: Pulse duration, range of values: 0 .. 65535

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 88

DELTA PTO mode: Period duration change between two pulses, range of values: -32768
... +32767
PWM mode: Not used

PC PTO mode: Number of pulses, range of values: 1 ... 4294967295

PWM mode: Not used

ENABLE Enable or disable the pulse generator

TRUE = Activation of the pulse generator; the generator accepts the control of the
allocated digital output
FALSE = Deactivation of the pulse generator; the process image controls the
allocated digital output (the PLC program directly influences the output)
With the rising edge at input ENABLE, the function block accepts the index for
setting the base cycle (input TB_IDX).

READY Status output of the pulse generator

TRUE = the pulse generator has been fully parameterized, the generator is ready
for operation
FALSE = the pulse generator has not been parameterized or the block was
terminated with an error, the generator is not ready for operation

BUSY Status output of the pulse generator

TRUE = the pulse generator is active (pulse train is being generated); the
generator controls the digital output
FALSE = the pulse generator is inactive (pulse train completed); the process image
controls the digital output (the PLC program directly influences the output)

CHANNEL Number of the channel to be used

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 24.

Table 24 Error Codes of the Function Block PTO_PWM

Error Code Definition

0 No error occurred during execution of the function block

1 Hardware error occurred during execution of the function block

2 The selected channel (CHANNEL) is not supported

8 The selected index for the base cycle (TB_IDX) is not supported

16 Overflow error for recalculation of the period duration taking DELTA into account
(period duration is larger than 65535 or smaller than 0)

32 There is no space available in the data record buffer, the data record has been
discarded

Description

The function block enables direct parameterization of the pulse generator in PTO (pulse train output)
and PWM mode (pulse duration output). The mode pulse output is an alternative function of the digital
outputs. If the input is ENABLE := FALSE, the process image influences the respective digital output.
If ENABLE := TRUE, the pulse generator controls the output.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 89

PTO generator (PDO_MODE := TRUE, pulse counter output, one-time pulse train):
The PTO generator creates a one-time pulse train to control the digital output. The pulse train is
described by a parameter set which consists of the period duration (initial value), Delta of the period
duration (value of the change between two subsequent pulses) as well as the number pulse to be
generated. The pulse width is set to 50% of the period duration (sampling ratio 1:1). Taking DELTA
into account, the period duration Tn is calculated as follows (also see Figure 3):

Tn = (CT + n*DELTA) * tB (with 0 <= n <= PC)

If tB = 1 ms (TB_IDX := 1) and CT := 1000, the initial period duration (n = 0) is:
Tn = 1 ms * 1000 = 1 second

Via the function block it is possible to string together pulse trains with different values for period
duration, Delta (change of period duration) and the number of pulses. For this, call the block for each
parameter set to be appended via APPEND := TRUE. This way, up to 255 parameter sets can be
appended. The block acknowledges the definition of further parameter sets with ERROR := 32 (no
space available in the data record buffer, the data record has been discarded). All parameter sets are
based on the same time base. The time base (input TB_IDX) can only be changed if the pulse
generator has been deactivated. The base cycle index is only passed with the rising edge at input
ENABLE. If a pulse train has been transmitted completely and no further parameter set is available,
the PTO generator automatically switches off and the process image once again controls the digital
output. Therefore, the PLC program has to store the desired digital output state after generator
deactivation in the process image. The PTO generator also switches off automatically if an overflow or
underflow error occurs during calculation of the period duration for the subsequent pulse. This is the
case if Tn (see above) is larger than 65535 or smaller than 0. The block signalizes this error via
ERROR := 32 (overflow error during recalculation of the period duration). Due to the accumulative
inclusion of DELTA, this error can only occur after a series of subsequent successful calculations.

PWM generator (PDO_MODE := TRUE, pulse duration output, continuous pulse train):
In the PWM generator function, a continuous pulse train is generated at the digital output. Here, the
period duration as well as the pulse duration can be set as the number of base cycles. If the input is
ENABLE := TRUE, the PWM generator is directly activated after parameter passing. If the value for
pulse duration PT is 0, the respective output remains inactive during the entire period duration. But if
the value for pulse duration PT is larger than or equal to the period duration, the output is active for the
entire period duration. The period duration is always changed asynchronously. The current period is
interrupted to accept the new value. The pulse duration is changed synchronously and accepted when
the next period duration starts. Call the block with input APPEND := TRUE to change parameters.
Calling the block via ENABLE := FALSE terminates generation of the continuous pulse train. The
function block automatically switches off if an error occurs during execution. The block can only be
reused after it has been reset via ENABLE := FALSE.

Output READY signalizes that the block is completely parameterized and thus ready for operation.
The parameter TB_IDX (index for setting the base cycle for the pulse generator) can no longer be
changed (TB_IDX is only read with rising edge at input ENABLE). Output READY returns to FALSE if
the block is called via ENABLE := FALSE.

If the function block returns with BUSY := TRUE, it signalizes that the generator is active and controls
the respective digital output (PTO mode: a parameterized pulse train is transmitted, PWM mode: a
continuous pulse train is generated). BUSY := FALSE indicates that the generator is inactive and that
the PLC program directly influences the respective digital output via the process image.

Possible errors during execution of the function block are displayed at output ERROR and described in
Table 24.

The following sample program displays the application of the function block PTO_PWM for generating
one-time pulse trains in PTO mode as well as for continuous pulse trains in PWM mode. Due to the
especially selected parameter sets no additional technical or measuring devices are required to
observe the pulse trains at the status LED of the PWM output. A cycle in PTO mode is started via a
positive edge at output xStartButtonPto. The pulse train starts with a pulse of 1 second (CT * TB =

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 90

1000 * 1 ms = 1 sec), each subsequent pulse is shortened by 50 ms (Delta = -50). A total of 15 pulses
is generated (PC = 15). The PWM mode is started via a positive edge at input xStartButtonPwm. The
generated pulse train has a period duration of 500 ms (CT * TB = 500 * 1 ms = 0.5 sec -> 2 Hz), the
on-time of each pulse is 150 ms (PT * TB = 150 * 1 ms = 150 ms).

Sample Program

PROGRAM PtoPwm

VAR CONSTANT

 (* Definition of TimeBase-Index *)
 PTO_TB_IDX_800_US : USINT := 0; (* TimeBase-Index 800us *)
 PTO_TB_IDX_1_MS : USINT := 1; (* TimeBase-Index 1ms *)

 (* Error Codes of FB PTO_TAB *)
 PTOTAB_ERROR_SUCCESS : USINT := 0;
 PTOTAB_ERROR_HW_ERROR : USINT := 1;
 PTOTAB_ERROR_UNKNOWN_CHANNEL : USINT := 2;
 PTOTAB_ERROR_UNKNOWN_TB_IDX : USINT := 8;
 PTOTAB_ERROR_DELTA_OVERFLOW : USINT := 16;
 PTOTAB_ERROR_INVALID_TAB : USINT := 64;

PTO_PWM_CHANNEL : USINT := 0;
END_VAR

VAR
 xStartButtonPto AT %IX0.0 : BOOL; (* DI0 at PmC14/phyPS-412 *)
 xStartButtonPwm AT %IX0.1 : BOOL; (* DI1 at PmC14/phyPS-412 *)
 xPtoPwmOut AT %QX2.4 : BOOL; (* P0 at PmC14/phyPS-412 *)

 FB_RTrigPto : R_TRIG;
 FB_RTrigPwm : R_TRIG;

 usiPtoTbIdx : USINT := 1; (* PTO_TB_IDX_1_MS *)
 uiPtoCt : UINT := 1000;
 iPtoDelta : INT := -50;
 udiPtoPc : UDINT := 15;

 usiPwmTbIdx : USINT := 1; (* PTO_TB_IDX_1_MS *)
 uiPwmCt : UINT := 500;
 uiPwmPt : UINT := 150;

 xPtoAppend : BOOL := TRUE;
 xPtoReady : BOOL := FALSE;
 xPtoBusy : BOOL := FALSE;

 xPwmAppend : BOOL := TRUE;
 xPwmReady : BOOL := FALSE;
 xPwmBusy : BOOL := FALSE;

 FB_PtoPwm : PTO_PWM;
 usiPtoPwmError : USINT;
END_VAR

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 91

(* ----- Wait for Start ----- *)
WaitForStart:
CAL FB_RTrigPto (CLK := xStartButtonPto)
LD FB_RTrigPto.Q
JMPC StartPtoMode

CAL FB_RTrigPwm (CLK := xStartButtonPwm)
LD FB_RTrigPwm.Q
JMPC StartPwmMode

LD xPtoBusy
JMPC RunPtoMode

LD xPwmBusy
JMPC RunPwmMode

JMP ProgExit

(* ----- Run PTO Mode ----- *)
StartPtoMode:
LD FALSE (* preset output state, this state is *)
ST xPtoPwmOut (* used when PTO Generator isn't running *)

LD FALSE (* reset state flags *)
ST xPtoReady
ST xPtoBusy
ST xPwmReady
ST xPwmBusy

CAL FB_PtoPwm (
 ENABLE := FALSE,
 CHANNEL := PTO_PWM_CHANNEL)

CAL FB_PtoPwm (
 ENABLE := TRUE,
 PTO_MODE := TRUE,
 APPEND := xPtoAppend,
 TB_IDX := usiPtoTbIdx,
 CT := uiPtoCt,
 DELTA := iPtoDelta,
 PC := udiPtoPc,
 CHANNEL := PTO_PWM_CHANNEL
 |
 xPtoReady := READY,
 xPtoBusy := BUSY,
 usiPtoPwmError := ERROR)

RunPtoMode:
CAL FB_PtoPwm (
 ENABLE := TRUE,
 PTO_MODE := TRUE,
 APPEND := FALSE,
 CHANNEL := PTO_PWM_CHANNEL
 |
 xPtoReady := READY,
 xPtoBusy := BUSY,
 usiPtoPwmError := ERROR)

JMP ProgExit

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 92

(* ----- Run PWM Mode ----- *)
StartPwmMode:
LD FALSE (* preset output state, this state is *)
ST xPtoPwmOut (* used when PTO Generator isn't running *)

LD FALSE (* reset state flags *)
ST xPtoReady
ST xPtoBusy
ST xPwmReady
ST xPwmBusy

CAL FB_PtoPwm (
 ENABLE := FALSE,
 CHANNEL := PTO_PWM_CHANNEL)

CAL FB_PtoPwm (
 ENABLE := TRUE,
 PTO_MODE := FALSE,
 APPEND := xPwmAppend,
 TB_IDX := usiPwmTbIdx,
 CT := uiPwmCt,
 PT := uiPwmPt,
 CHANNEL := PTO_PWM_CHANNEL
 |
 xPwmReady := READY,
 xPwmBusy := BUSY,
 usiPtoPwmError := ERROR)

RunPwmMode:
CAL FB_PtoPwm (
 ENABLE := TRUE,
 PTO_MODE := FALSE,
 APPEND := FALSE,
 CHANNEL := PTO_PWM_CHANNEL
 |
 xPwmReady := READY,
 xPwmBusy := BUSY,
 usiPtoPwmError := ERROR)

JMP ProgExit

(* ----- Cycle End ----- *)
ProgExit:
RET

END_PROGRAM

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 93

8.3 Function Block PTO_TAB

The function block PTO_TAB indirectly parameterizes the pulse generator in PTO mode (pulse train
output) via a parameter set table. This block is only available on controls which have PWM outputs.

Prototype of the Function Block

 +-----------------+
 | PTO_TAB |
 | |
 BOOL ---|ENABLE READY|--- BOOL
 | BUSY|--- BOOL
 | |
 USINT ---|TB_IDX |
 | |
 [...] ---|TABLE-------TABLE|--- [...]
 UINT ---|RECORDS |
 | |
 USINT ---|CHANNEL ERROR|--- USINT
 | |
 +-----------------+

Definition of Operands

TB_IDX Index for setting the base cycle for the pulse generator, this parameter depends on

the properties of the respective control, valid values are, e.g.:
0 = 800ns base cycle
1 = 1ms base cycle
The base cycle is valid for all the table parameter sets and is only accepted with
the rising edge at input ENABLE.

TABLE Parameter set table, contains the parameter sets of the pulse trains to be

generated (see text)
RECORDS Number of occupied entries in the parameter set table passed to input TABLE (see

text)

ENABLE Enable or disable the pulse generator

TRUE = Activation of the pulse generator, the parameter set table specified at input
TABLE is read and the generator controls the allocated digital output
FALSE = Deactivation of the pulse generator, the process image controls the
allocated digital output (the PLC program directly influences the output)
The function block accepts the index for setting the base cycle (input TB_IDX) if the
edge is rising at input ENABLE.

READY Status output of the pulse generator

TRUE = the pulse generator has been fully parameterized, the generator is ready
for operation
FALSE = the pulse generator has not been parameterized or the block was
terminated with an error, the generator is not ready for operation

BUSY Status output of the pulse generator

TRUE = the pulse generator is active (pulse train is generated), the generator
controls the digital output
FALSE = the pulse generator is inactive (pulse train completed), the process image
controls the digital output (the PLC program directly influences of the output)

CHANNEL Number of the channel to be used

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 25.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 94

Table 25 Error Codes of the Function Block PTO_TAB

Error Code Definition

0 No error occurred during execution of the function block

1 Hardware error occurred during execution of the function block

2 The selected channel (CHANNEL) is not supported

8 The selected index for the base cycle (TB_IDX) is not supported

16 Overflow error for recalculation of the period duration taking DELTA into account
(period duration is larger than 65535 or smaller than 0)

64 The parameter set passed to input TABLE is invalid

Description

The function block enables indirect parameterization of the pulse generator in PTO mode (pulse train
output) via a parameter set table. Define the table in the PLC program as follows:

PTO_TABLE : ARRAY [0..255] OF PTO_RECORD;

PTO_RECORD is globally defined in OpenPCS and has the following composition:

 PTO_RECORD : STRUCT
 CT : UINT;
 DELTA : INT;
 PC : UDINT;
 END_STRUCT;

The definition of the parameters CT, DELTA and PC corresponds to that of the function block
PTO_PWM (see section 8.2). Adhere to the variable and parameter types according to standard
IEC 61131-3. Therefore, always create the parameter set table in the PLC program with 256 available
entries (ARRAY [0..255] OF PTO_RECORD). Specify the number of data records which have really
been configured with valid parameters at output RECORDS. All parameter sets are based on the
same time base. The time base (input TB_IDX) can only be changed if the pulse generator is
deactivate.

The block accepts the parameter set table at input TABLE if the edge is rising at input ENABLE (only
the number of parameter sets specified as RECORDS are considered) and starts generation of the
pulse trains. When the table has been completely processed, the PTO generator automatically
switches off and the process image once again controls the digital output. Therefore, the PLC program
has to store the desired digital output state after generator deactivation in the process image. The
PTO generator also switches off automatically if an overflow or underflow error occurs during
calculation of the period duration for the subsequent pulse. This is the case if Tn (see description in
section 8.2) is larger than 65535 or smaller than 0 after calculation. The block signalizes this error via
ERROR := 32 (overflow error during recalculation of the period duration). Due to the accumulative
inclusion of DELTA, this error can only occur after a series of subsequent successful calculations.

The following sample program shows the application of the function block PTO_TAB for generating
one-time pulse trains with the help of a parameter set table. The motor drive displayed in Figure 5:
Time diagram for sample program "MotorCtl"

 is simulated with 3 phases (start, continuous running and stop). Due to the especially selected
parameter sets no additional technical or measuring devices are required to observe the pulse trains
at the status LED of the PWM output. A cycle is started via a positive edge at input xStartButtonPto.

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 95

Record 0 Record 2Record 1

Delta < 0 Delta > 0

Delta = 0

T = (CT + n*Delta) * tB

t, Impulse

Figure 5: Time diagram for sample program "MotorCtl"

Sample Program

PROGRAM MotorCtl
VAR CONSTANT
 (* Definition of TimeBase-Index *)
 PTO_TB_IDX_800_US : USINT := 0; (* TimeBase-Index 800us *)
 PTO_TB_IDX_1_MS : USINT := 1; (* TimeBase-Index 1ms *)

 (* Error Codes of FB PTO_TAB *)
 PTOTAB_ERROR_SUCCESS : USINT := 0;
 PTOTAB_ERROR_HW_ERROR : USINT := 1;
 PTOTAB_ERROR_UNKNOWN_CHANNEL : USINT := 2;
 PTOTAB_ERROR_UNKNOWN_TB_IDX : USINT := 8;
 PTOTAB_ERROR_DELTA_OVERFLOW : USINT := 16;
 PTOTAB_ERROR_INVALID_TAB : USINT := 64;

 PTO_CHANNEL : USINT := 0;
END_VAR

VAR
 aPdoTab : ARRAY[0..255] OF PTO_RECORD :=
 [
 (* CT : UINT DELTA : INT PC : UDINT *)
 (CT := 1000, DELTA := -100, PC := 9),
 (CT := 100, DELTA := 0, PC := 50),
 (CT := 100, DELTA := 200, PC := 5)
];
 uiRecords : UINT := 3;

 usiProcState : USINT := 0;

 FB_PtoTab : PTO_TAB;
 ausiError : ARRAY[0..2] OF USINT;

 xStartButton AT %IX0.0 : BOOL; (* DI0 at PmC14/phyPS-412 *)
 xMotorOut AT %QX2.4 : BOOL; (* P0 at PmC14/phyPS-412 *)

 FB_RTrig : R_TRIG;
END_VAR

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 96

(* ----- Select current program step ----- *)
LD usiProcState
EQ 0
JMPC WaitForStart
LD usiProcState
EQ 1
JMPC PtoInit
LD usiProcState
EQ 2
JMPC PtoSetTab
LD usiProcState
EQ 3
JMPC PtoRun
LD 0
ST usiProcState

(* ----- Wait for Start ----- *)
WaitForStart:
CAL FB_RTrig (CLK := xStartButton)
LD FB_RTrig.Q
JMPCN ProgExit

LD usiProcState
ADD 1
ST usiProcState
JMP ProgExit

(* ----- Init PTO Generator ----- *)
PtoInit:
LD FALSE (* preset output state, this state is *)
ST xMotorOut (* used when PTO Generator isn't running *)

CAL FB_PtoTab (
 ENABLE := FALSE,
 CHANNEL := PTO_CHANNEL,
 TABLE := aPdoTab,
 RECORDS := 0
 |
 ausiError[0] := ERROR)

LD usiProcState
ADD 1
ST usiProcState
JMP ProgExit

(* ----- Set Table ----- *)
PtoSetTab:
CAL FB_PtoTab (
 ENABLE := TRUE,
 CHANNEL := PTO_CHANNEL,
 TB_IDX := PTO_TB_IDX_1_MS,
 TABLE := aPdoTab,
 RECORDS := uiRecords
 |
 ausiError[1] := ERROR)

LD usiProcState
ADD 1
ST usiProcState
JMP ProgExit

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 97

(* ----- Run PTO Generator ----- *)
PtoRun:
CAL FB_PtoTab (
 ENABLE := TRUE,
 CHANNEL := PTO_CHANNEL,
 TB_IDX := PTO_TB_IDX_1_MS,
 TABLE := aPdoTab,
 RECORDS := uiRecords
 |
 ausiError[2] := ERROR)
LD FB_PtoTab.BUSY
JMPC ProgExit

LD usiProcState
ADD 1
ST usiProcState
JMP ProgExit

(* ----- Cycle End ----- *)
ProgExit:
RET

END_PROGRAM

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 98

9 Processing of Process Data

9.1 Application of the PID Controller

A controller is used if the output variable of a system cannot be directly controlled by the input variable
due to unpredictable disturbance variables. The task of a controller is to monitor the output variable
(actual value, process variable PV), to compare it with the command variable (set value, set point SP,
error signal = set value – actual value) and to adjust the system input variable via a setting unit (see

controller

process

+

-

set point

process value

error value

Figure 6: Principle of a control loop
). The result is a new, adjusted output variable. The system is fed-back. An adjustment requires
monitoring of the output variable. Therefore, it may be necessary to find or create suitable variables to
monitor the system.

controller

process

+

-

set point

process value

error value

Figure 6: Principle of a control loop

In contrast to this, the known connection between the output variable, disturbance variable and the
input variable of a path and the known performance of the disturbance variable does not require
observation of the output variable. The output variable can be guided at any time via targeted
influence of the input variable according to a set value. In this case, it is known as a control. The
system is not fedback.

The function block PID1 (see section 9.2) calculates the correcting variable CO (controller output)
according to the method of the quasi continuous PID control (proportional, integral, derivative

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 99

controller) from the input values set value SP (set point) and actual value PV (process variable). The
properties of the PID controller regarding frequency and phase response are described via its
parameters controller gain KR, derivative time TD and reset time TI and sampling period T0.

Call the block at constant intervals during the sampling period T0 to achieve correct functioning of the
controller.

Basic Principles (PID Algorithms)

With an analog controller the correcting variable y(t) results from the sum of proportional gain yP(t),
integral gain yI(t) and derivative gain yD(t):

)()()(

)()()()(

)()()()(

0

0

tPVtSPte

y
dt

tdeTKdtte
T
KteKty

ytytytyty

DR
I

R
R

DIP

−=

+++=

+++=

∫

This equation can be passed to a quasi continuous PID controller by sampling the error signal. The
integral gain is replaced by a sum of all the error signals, and the derivative gain by a difference of the
last two error signals.

0

1

0 0

00
0

0
0

))1(()(()()([)0(y
T

TkekTeTkTe
T
TkTeKkTy

k

n

D

I
R +

−−
++= ∑

−

=

Calculation of the integral gain can be simplified even further: the new integral gain values can be
determined from the result of the last value plus the new error signal. Therefore, it is not necessary to
store all the error signal values since the start of the controller. The sum of all the previous values is
called the integral sum and the initial value y0 of the integral sum is known as bias.

000
0))1(()()0(yTkykTe

T
T

KkTy I
I

RI +−+=

The derivative gain is replaced by the difference of the last two error signals. In order not to create any
jumps in the correcting variable when changing the set value, it is supposed for the D gain that the set
value between two sampling period points is always constant. Therefore, the calculation of the D gain
is restricted to the difference of the last two actual values (PV(kT0), PV((k-1)T0)).

0

00))1(()((
)0(

T
TkPVkTPVT

KkTy D
RD

−−
=

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 100

9.2 Function Block PID1

The function block PID1 realizes a PID controller block according to the control algorithm described in
section 9.

Prototype of the Function Block

 +--------------+
 | PID1 |
 | |
 BOOL ---|ENABLE READY|--- BOOL
 | |
 REAL ---|PV CO |--- REAL
 REAL ---|SP |
 | |
 REAL ---|KR |
 TIME ---|T0 |
 TIME ---|TI |
 TIME ---|TD |
 REAL ---|BIAS ERROR|--- USINT
 | |
 +--------------+

Definition of Operands

PV Standardized actual value (process variable) of the controlled system

valid values range from 0.0 ... 1.0, the block automatically checks this parameter
(but not for overflow errors)

SP Standardized set value (command variable, set point) for the controller

valid values range from 0.0 ... 1.0, the block automatically checks this parameter
(but not for overflow errors)

KR Standardized controller gain

A positive or negative gain can be selected. With a positive gain the controller
displays forward control and reverse control with a negative gain. With a gain of 0,
the PID calculation results in a P gain of zero and is therefore not considered.
Since the gain is also connected to the I and D gains, a gain of 1 is used for the I
and D gains here.

T0 Sampling period of the controller (valid range of values T0 > 0)

TI Reset time

TD Derivative time

BIAS Initial value of the correcting variable or integral sum during the start of the PID

calculation (valid range of values 0.0 ... 1.0)

ENABLE The control parameters KR, T0, TI, TD are accepted and the integral sum set at

initial value BIAS if the edge is rising. Outputs READY, ERROR and CO are reset
via ENABLE = FALSE. The block checks the area of validity and, if necessary,
signals an overflow error at the error output during the transfer of the parameters
T0 and BIAS.

CO Controller output, calculated correcting variable of the controller (range of values

0.0 ... 1.0)

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 101

READY Status output of the PID controller
TRUE = the controller block has been completely parameterized and is ready for
operation
FALSE = the controller block has not been parameterized or has been incorrectly
parameterized (the controller parameters are outside the area of validity), the
controller block is not ready for operation

ERROR The error code states information about the execution result of the function block.

Possible error codes are defined in Table 26.

Table 26 Error Codes of the Function Block PID1

Error Code Definition

0 No error occurred during execution of the function block

8 The specified value for the parameter BIAS is invalid (smaller than 0 or larger than 1)

16 The specified value for the parameter T0 is invalid (time equals 0)

Description

The function block realizes a PID controller block according to the control algorithm described in
section 9. If the edge is rising at input ENABLE, the block accepts the controller parameters KR, T0,
TD, TI and BIAS and starts the controller. The set value and the last actual value are set to the current
actual value for the first calculation. The first calculation of the correcting variable always results in the
value BIAS, since zero is set for the proportional, integral and derivative gain. The performance of the
controller can be influenced by the choice of the controller parameters. If the time TI = t#0ms, the
integral gain of the controller is not calculated and set to zero. If the time TD = t#0ms, the value for the
derivative gain is zero. If the gain KR is zero, the proportional gain is not required. Since the gain KR is
also linked to the integral and derivative gains, a gain of 1 is used for the I and D gains here.

P controller TI = TD = 0, KR ≠ 0
PI controller TD = 0, KR, TI ≠ 0
PID controller KR, TI, TD ≠ 0

There are various methods for determining the controller parameters (inflection point tangent,
oscillation test). The parameters can also be determined via simulation tools. However, in regard to
the frequency and phase response, it is necessary that the complete controlled system can be
described as a model. A model for the relevant transfer elements of the controlled system can then be
created from known values and behavior to determine the parameters during simulation.

The set value, actual value, the bias and the correcting variable are used as standardized variables.
The values for the standardized variables range from 0.0 to 1.0. The area of validity for the bias is
checked during the start of the block. An error at output ERROR signalizes if the value is outside the
area. The set value and actual value are not checked due to the runtime. The function block restricts
the values of the correcting variable and the integral sum . If the calculation results in a negative value,
the variable is set to 0.0. If the result exceeds the value 1, delimiting occurs to 1.0. Furthermore, the
integral sum is, depending on the correcting variable, limited according to the following rule:

• If the result of the correcting variable is larger than 1.0, the integral sum is calculated as follows:

Integral sum = 1.0 - (proportional gain + derivative gain)

• If the result of the correcting variable is larger than 0.0, the integral sum is calculated as follows:

Integral sum = 1.0 - (proportional gain + derivative gain)

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 102

Normalization of the Input Value

During normalization the value range of a variable is mapped onto another number range. An analog
input has a value range from 0 ... 32767. This number range has to be mapped onto the value range
of the controller (0.0 ... 1.0):

32767/yynom =

The value range to be mapped (-32768 ... +32767) is doubled for a bipolar input variable. Here, the
mapping in the positive number range of the standardized variable is considered with an offset of 0.5:

5.065535/ += yynom

Example:

(1) The actual value of the path is accepted with an analog input 0-10V. The current actual value is

7.5V. The actual value is stored as a 15 bit = 7.5 * 32767 / 10 = 24575 in the process image:

7499924.032767/2457532767/ === yynom

(2) The actual value of the path is accepted with an analog input ±010V. The current actual value is

7.5V. The actual value is stored as a 15 bit signed = 7.5 * 32767 / 10 = 24575 in the process
image:

87499.05.065535/245755.065535/ =+=+= yynom

(3) The actual value of the path is accepted with an analog input ±010V. The current actual value is -

7.5V. The actual value is stored as a 15 bit signed = -7.5 * 32767 / 10 = -24575 in the process
image:

12501.05.065535/245755.065535/ =+−=+= yynom

Normalization of the Output Value

Reverse-calculation of output values from the normalized values occurs in reverse order. An analog
output has a value range from 0 ... 32767. This number range has to be mapped onto the value range
of the controller output (0.0 ...

32767⋅= nomyy

The value range to be mapped (-32768 ... +32767) is doubled for a bipolar output variable. Here, the
mapping in the positive number range of the standardized variable is considered with an offset of 0.5:

65535)5.0(⋅−= nomyy

The following sample program shows the execution of a controlled system via the PLC block-C14. The
path is combined of several 1st order transfer elements:

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 103

Analogue Input
Low pass f ilter 1. order

fg=130kHz, K=1

+
PID controller

T0, KR, TI
TD, BIAS

Analogue Output
Low pass f ilter 1. order

fg=53Hz, K=1

process value

set point

-

U = 0 .. 10V

SPSmodule-C14

+

-

R1=10k

C=47µF

R2=10k

R3=7.5k

U = 0 .. 10V

Figure 7: Composition of the controlled system for sample program "PidTest"

The actual value of the path is read via the analog input AI0, the correcting variable is created with the
analog output AO0.

Sample Program

PROGRAM PidTest

VAR CONSTANT
 (* Error Codes of FB PID1 *)
 PID1_ERR_SUCCESS : USINT := 0;
 PID1_ERR_INVALID_BIAS : USINT := 8;
 PID1_ERR_INVALID_T0 : USINT := 16;
END_VAR

VAR_GLOBAL
 (* Prozess Variables *)
 ADC_Result AT %IW8.0 : UINT;
 ControlOutput AT %QW8.0 : UINT;
END_VAR

VAR
 SetPoint_V : REAL := 1.0;
 ProcessVar_V : REAL;
 Bias : REAL;
 FB_PID : PID1;
 FB_Timer : TON;
END_VAR

(* to get periodical time stamps start an TON timer *)
FB_Timer(IN := TRUE, PT := t#25ms);
IF (FB_Timer.Q = FALSE) THEN
 (* the timer intervall is not left *)
 RETURN;
END_IF;

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 104

(* The timer intervall is left. Restart the timer for next *)
(* periode. *)
FB_Timer(IN := FALSE);
FB_Timer(IN := TRUE, PT := t#25ms);

(*--*)
(* Prepare calculating PID algorithm *)
(* Scale the result of AD converter to a REAL number *)
ProcessVar_V := UINT_TO_REAL(ADC_Result) * 10.0 / 32767.0;

(*--*)
(* calculating PID algorithm *)
(* The inputs must scalled by 10.0V *)
FB_PID(ENABLE := TRUE,
 PV := ProcessVar_V / 10.0,
 SP := SetPoint_V / 10.0,
 KR := 1.5,
 T0 := t#25ms, (* sample time is 25ms *)
 TI := t#20ms, (* integral time is 20ms *)
 TD := t#6ms, (* derivative time is 6ms *)
 BIAS := Bias
);

(* The result is scalled to unsigned integer value. *)
ControlOutput := REAL_TO_UINT (FB_PID.CO * 32767.0);
(* The control output is stored to bias to prevent high *)
(* steps in the reaction curve of controler output if a re- *)
(* start (the PLC was stopped and starts again) is happend. *)
Bias := FB_PID.CO;
RETURN;

END_PROGRAM

Figure 8 illustrates the control effect of the sample program above based on the actual value change
during a command variable jump (set value) from 1V to 6V.

process
value

set point

6V

1V
Coupling

Mode

Source

Slope

Edge

Figure 8: "PidTest" - Change of the actual value during a command variable jump (set value) from 1V
to 6V

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 105

10 Index

A

ASC ...19

B

BIN_TO_STR ..20

C

CHR...18
CNT_FUD..75
CONCAT..15
Counter

Overview ..75

D

DELETE...16
DT_ABS_TO_REL...83
DT_CLOCK..80
DT_REL_TO_ABS...84

E

Error Task..7
ETRC...8
Event-Task

Overview ..7

F

FIND ..17

G

GETSTRINFO ...17

I

INSERT..15

L

LAN_ASCII_TO_INET...................................27
LAN_GET_HOST_BY_ADDR29
LAN_GET_HOST_BY_NAME.......................28
LAN_GET_HOST_CONFIG26
LAN_INET_TO_ASCII27
LAN_UDP_CLOSE_SOCKET.......................31
LAN_UDP_CREATE_SOCKET.....................29
LAN_UDP_RECVFROM_BIN34
LAN_UDP_RECVFROM_STR32
LAN_UDP_SENDTO_BIN.............................36
LAN_UDP_SENDTO_STR............................33
LEFT..13
LEN..13

M

MID ..14

N

NVDATA
Overview ... 41

NVDATA_BIN ... 49
NVDATA_BIT.. 41
NVDATA_INT.. 44
NVDATA_STR .. 47

P

PID Controller
Overview ... 98
Standardization of the Input Value.......... 102
Standardization of the Output Value 102

PID1 .. 100
PTO_PWM.. 87
PTO_TAB.. 93
PTRC .. 11
Pulse Generator

Overview ... 86
PWM,PTO

Overview ... 86

R

Real Time Clock
Overview ... 80

REPLACE ... 16
RIGHT... 14
RTC

Overview ... 80

S

Serial Interface Overview.............................. 52
SIO

Overview ... 52
SIO_INIT ... 52
SIO_READ_BIN.. 68
SIO_READ_CHR.. 58
SIO_READ_STR... 61
SIO_STAT... 55
SIO_WRITE_BIN .. 70
SIO_WRITE_CHR .. 59
SIO_WRITE_STR... 63
Start Task.. 7
Stop Task.. 7
STR... 19
STR_TO_BIN.. 22

V

VAL ... 20

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 107

Document: SYS TEC Specific Extension for OpenPCS / IEC 61131-3
Document number: L-1054-04, July 2011

Do you have any suggestions for improving this manual?

Have you discovered any errors in this manual? Page

Sent from:
Customer number:

Name:

Company:

Address:

Send to:
 SYS TEC electronic GmbH
 August-Bebel-Str. 29
 07973 Greiz, Germany
 Fax: +49 (0)3661 / 6279-99

 SYS TEC-specific Extensions for OpenPCS / IEC 61131-3

 © SYSTEC electronic GmbH 2011 L-1054e_04 108

	1 Event Tasks
	1.1 Application of Event Tasks
	1.2 Creation and Configuration of Event Tasks
	1.3 Function Block ETRC
	1.4 Function Block PTRC

	2 String Processing
	2.1 Standard String Functions according to IEC 61131-3
	2.1.1 Function LEN
	2.1.2 Function LEFT
	2.1.3 Function RIGHT
	2.1.4 Function MID
	2.1.5 Function CONCAT
	2.1.6 Function INSERT
	2.1.7 Function DELETE
	2.1.8 Function REPLACE
	2.1.9 Function FIND

	2.2 SYSTEC-Specific String Functions and Function Blocks
	2.2.1 Function Block GETSTRINFO
	2.2.2 Function CHR
	2.2.3 Function ASC
	2.2.4 Function STR
	2.2.5 Function VAL
	2.2.6 Function BIN_TO_STR
	2.2.7 Function STR_TO_BIN

	3 Data Communication via UDP
	3.1 Data Communication Application via UDP
	3.2 Definitions for UDP Blocks
	3.3 Function Block LAN_GET_HOST_CONFIG
	3.4 Function LAN_ASCII_TO_INET
	3.5 Function LAN_INET_TO_ASCII
	3.6 Function LAN_GET_HOST_BY_NAME
	3.7 Function LAN_GET_HOST_BY_ADDR
	3.8 Function Block LAN_UDP_CREATE_SOCKET
	3.9 Function Block LAN_UDP_CLOSE_SOCKET
	3.10 Function Block LAN_UDP_RECVFROM_STR
	3.11 Function Block LAN_UDP_SENDTO_STR
	3.12 Function Block LAN_UDP_RECVFROM_BIN
	3.13 Function Block LAN_UDP_SENDTO_BIN
	3.14 Sample Program for applying UDP Function Blocks

	4 Securing Process Data in the Nonvolatile Storage
	4.1 Application of Nonvolatile Storage for Process Data
	4.2 Function Block NVDATA_BIT
	4.3 Function Block NVDATA_INT
	4.4 Function Block NVDATA_STR
	4.5 Function Block NVDATA_BIN

	5 Access to Serial Interface (SIO)
	5.1 Application of the Serial Interface
	5.2 Function Block SIO_INIT
	5.3 Function Block SIO_STATE
	5.4 Function Block SIO_READ_CHR
	5.5 Function Block SIO_WRITE_CHR
	5.6 Function Block SIO_READ_STR
	5.7 Function Block SIO_WRITE_STR
	5.8 Function Block SIO_READ_BIN
	5.9 Function Block SIO_WRITE_BIN

	6 Access to Hardware Counter
	6.1 Application of Hardware Counters
	6.2 Function Block CNT_FUD

	7 Access to Real Time Clock (RTC)
	7.1 Application of the Real Time Clock (RTC)
	7.2 Function Block DT_CLOCK
	7.3 Function Block DT_ABS_TO_REL
	7.4 Function Block DT_REL_TO_ABS

	8 Access to the Pulse Generator (PWM/PTO)
	8.1 Application of the Pulse Generator (PTO/PWM)
	8.2 Function Block PTO_PWM
	8.3 Function Block PTO_TAB

	9 Processing of Process Data
	9.1 Application of the PID Controller
	9.2 Function Block PID1

	10 Index

