

sysWORXX CTR-700

Quick Start Guide

Project:	sysWORXX CTR-700
Project Number:	131606
Document Revision:	L-2101e-05
Author:	Ferenc Reményi; Christian Schuster; Andreas Dinter
File Name:	L-2101e_05_10 Quick Start Guide
Print Date, Time:	19.04.2018, 14:37
Customer:	-
Classification:	public

Disclaimer:

All data, information and technical specifications contained in this document has been subjected to a thorough examination. The information in the document is current at the time of publication as long as nothing else is explicitly stated. However no liability is given for the correctness, completeness and topicality of the contents.

Release

Version	Created	Checked	Released
01	E Románui 07 11 2017		SYS TEC:-
01	F.Remeny = 07.11.2017		Customer:-

Revision History

Version	Date	Author	Changes
01	07.11.2017	F. Reményi	
			Overview
02	27.11.2017	C. Schuster	Configuration
02			Application Development
			Process Image
02	05 10 2017		Start/Stop OPC UA Server
03	05.12.2017	A. Dinter	Setup OpenPCS Project for use with OPC UA Server
04	06.02.2018	A. Dinter	I/O Driver / C/C++ Development
05	29.03.2018	A. Dinter	Update service names for OpenPCS

Contents

Li Li 1 2 3	List of Tables		
	3.1	Pin assignment	. 7
	3.2 3.3	Digital inputs DI0 DI15 (24VDC) Digital outputs DO0 DO15 (24VDC / 0.5A, short-circuit-proof)	. 9 10
4	Со	nfiguration and Administration of the CTR-700	12
	4.1 4.2 4.2. 4.3 4.4 4.4 4.4.	System requirements and necessary software tools	12 13 13 13 14 14 14
5	Ар	blication Development for the CTR-700	15
	5.1 5.2 5.3	Running C# Applications via Mono Setup a OpenPCS Project for OPC UA Server I/O Driver and C/C++ Development	15 15 16
6	Ор	enPCS Process Image of the CTR-700	18
	6.1 6.2	Local in- and Outputs	18 19

List of Tables

Table 1: Overview of relevant manuals	6
Table 2: Description Terminals	7
Table 3: Description Switches	9
Table 4: Description LEDs	9
Table 5: Assignment of in- and outputs to the process image of the CTR-700	18
Table 6: Representation of network variables for CAN1 by entries in the object dictionary	20
Table 7: Preconfigured PDOs for interface CAN1	20

List of Figures

Figure 1: sysWORXX CTR-700	. 5
Figure 2: Overview Terminals	. 7
Figure 3: Setup of digital inputs DI0 DI15	10
Figure 4: Setup of digital outputs DO0 DO15	11
Figure 5 - OpenPCS Ressource Panel	15
Figure 6 - OpenPCS warning for unsynchronized data	16
Figure 7 - OPC UA Client Settings	16
Figure 8 - OPC UA client variables tree	16
Figure 9: Positioning of network variables for CAN1 within the marker section	19

1 Introduction

The document contains an overview about terminals of the sysWORXX CTR-700 and describes the first steps in software.

2 Overview

Table 1: Overview of relevant manuals

Information about	In which manual?
Basic information about the CTR-700	In this manual
(connections, configuration, administration,	
process image)	
Basics about the OpenPCS IEC 61131	Brief instructions for the programming system
programming system	(Entry "OpenPCS Dokumentation" in the
	OpenPCS program group of the start menu)
	(Manual no.: L-1005)
Complete description about the OpenPCS	Online help about the OpenPCS programming
IEC 61131 programming system, basics of PLC	system
programming according to IEC 61131-3	
Command overview and description of standard	Online help about the OpenPCS programming
function blocks according to IEC 61131-3	system
SYS TEC extension for IEC 61131-3:	User Manual "SYS TEC-specific extensions for
- String functions	OpenPCS / IEC 61131-3"
- UDP function blocks	(Manual no.: L-1054)
- SIO function blocks	
- FB for RTC, Counter, EEPROM, PWM/PTO	
CANopen extension for IEC 61131-3	User Manual "CANopen extension for
(network variables, CANopen function blocks)	IEC 61131-3"
	(Manual no.: L-1008)
Textbook about PLC programming according to	IEC 61131-3: Programming Industrial Automation
IEC 61131-3	Systems
	John/Tiegelkamp
	Springer-Verlag
	ISBN: 3-540-67752-6
	(a short version is available as PDF on the
	OpenPCS installation CD)

3 Description Hardware

3.1 Pin assignment

Figure 2: Overview Terminals

Table 2: Description Terminals

Terminal	Port	Signal name	Interface
V1	1	GND	
	2 9	DO0 DO7	digital outputs 0 … 15
Vo	1	24V	(24V)
~2	2 9	DO8 DO15*	
	1	СОМ	rolav 0
X3	2	NO	
	3	NC	(2307)
	1	СОМ	relay 1
X4	2	NO	(230)/)
	3	NC	(2007)
X5	1	GND	
7.0	2 9	DI0 DI7	digital inputs 0 … 15
X6	1	24V	(24V)
7.0	2 9	DI8 DI15	
X7	1, 2	AIN 0, AIN 1	
	3	AGND	analog inputs 0 3
X8	1, 2	AIN 2, AIN 3	(0 10V/0 20mA)
7.0	3	AGND	
X9	-	-	µSD-card-holder
X10	-	-	μUSB (console)
	1	PE	power
X11	2	GND	(24V)
	3	24V	()
X12	-	-	USB-Host
X13	-	-	ethernet 0
X14	-	-	ethernet 1
	1	RX, D0	
X15	2	D1	serial interface 0
	3	TX	(RS232/RS485-MOD-BUS)
	4	GND	
	1	RX, D0	
X16	2	D1	serial interface 1
	3		(R\$232/R\$485-MOD-BUS)
	4	GND	
	1		-
×47	2		serial interface 2
X17	3		(RS232/RS485-MOD-BUS)
	4	RIS	-
	5	GND	
V/10	1	HIGH	
X18	2		
	3	GND	
X19	1	HIGH	
	2		L CAN 1
	3	GND	

* DO10 and DO11 are used also as boot configuration pins. Depending on the configured boot mode (SD-Card/EMMC) this will cause one of the outputs to activate for about one second when booting the CTR-700. This issue will be resolved in an upcoming revision.

Table 3: Description Switches

Switch	Port	Feature	0	1
S1	-	RESET	-	-
S2	-	RUN	OFF	ON
1		termination serial interface 2 (RS485-MOD-BUS)	OFF	ON
	2	termination serial interface 1 (RS485-MOD-BUS)	OFF	ON
S3	3	termination serial interface 0 (RS485-MOD-BUS)	OFF	ON
	4	configuration	OFF	ON
	5	boot	-	-
	6	boot mode (SD-Karte/EMMC)	SD	EMMC
S1	1	termination CAN 0	OFF	ON
- 34	2	termination CAN 1	OFF	ON

Table 4: Description LEDs

Led	Colour	Feature
D01	green	status of power supply digital outputs
D02 D17	yellow	status of digital outputs
D18	green	status power supply digital inputs
D19 D34	yellow	status digital inputs
D35	green	status of the system (RUN)
D36	red	status of the system (STOP)
D37	green	power supply device

3.2 Digital inputs DI0 ... DI15 (24VDC)

The CTR-700 features 16 digital inputs (DI0 ... DI15). The inputs are galvanically isolated in groups of eight inputs. Each four inputs have the same supply potential (DI0 ... 7, DI8 ... 15). The inputs are highly active with the following selector shaft:

- Input voltage > 15 VDC: is shown as '1' in the process image
- Input voltage < 5 VDC: is shown as '0' in the process image

Digital inputs DI0 ... DI15 have the internal structure as shown in Figure 3.

Figure 3: Setup of digital inputs DI0 ... DI15

The digital inputs in a PLC program are accessible via the process image (see in Table 5 section 6.1).

3.3 Digital outputs DO0 ... DO15 (24VDC / 0.5A, short-circuit-proof)

The CTR-700 features 16 digital transistor outputs (DO0 ... DO15). The outputs each connect the supply voltage Vcc of the appliance (switching positively). The maximum load current for each 24V output is 0.5A for ohmic, inductive or capacitive load. The outputs are short-circuit-proof and galvanically isolated from the CPU unit. The performance drivers used are protected against excess voltage, reverse polarity and excess temperature. The transistor outputs are accessed high-actively:

- '1' in process image: output transistor active, appliance connected with Vcc
- '0' in process image: output transistor inactive, appliance disconnected from Vcc

The digital transistor outputs DO0 ... DO15 have the internal structure as shown in Figure 4 .

Figure 4: Setup of digital outputs DO0 ... DO15

The digital outputs in a PLC program are accessible via the process image (see in Table 5 section 6.1).

4 Configuration and Administration of the CTR-700

The Operating System of the CTR-700 is a Debian GNU/Linux installed on the included SD card. This means you can install software via apt/apt-get utilities.

There are two options to access the CTR-700 via command shell:

- SSH via eth0, which is by default configured for DHCP
- Serial connection via USB-Service plug (On board USB-FTTI chip)
 Baudrate: 115200 / 8N1

The default login credentials are as follows:

User: root Password: root

4.1 System requirements and necessary software tools

The administration of the CTR-700 requires any Windows or Linux computer that has available an Ethernet or USB interface. These allow a connection to administer the CTR-700 via a Linux command line-interface.

All examples referred to in this manual are based on an administration of the CTR-700 using a Windows computer. Procedures using a Linux computer would be analogous.

To administrate the CTR-700 the following software tools are necessary:

Terminal program A Terminal program allows the communication with the **command shell** of the CTR-700 via **the integrated USB-to-UART bridge (USB service console) of the** CTR-700. This is required for the Ethernet configuration of the CTR-700 as described in section 4.4. After completing the Ethernet configuration, all further commands can either be entered in the Terminal program or alternatively in a SSH client (see below).

A suitable Terminal program would be *"TeraTerm"*, which is available as Open Source Software (*BSD* License). The project page is located at: <u>http://ttssh2.osdn.jp/</u>.

SSH SSH allows the encrypted communication with **command shell** of the CTR-700 via **Ethernet**. Using SSH requires a completed Ethernet configuration of the CTR-700 according to section 4.4. As alternative solution to SSH, all commands can be used via a Terminal program.

Suitable as SSH client would be "*PuTTY*" or "*TeraTerm*", which can also be used as Terminal program (see above). "*PuTTY*" is licensed under *MIT*-License and can be downloaded at: <u>https://www.chiark.greenend.org.uk/~sgtatham/putty/</u>.

SFTP client An SFTP client allows for file transfer between the CTR-700 and the computer. This allows for example editing configuration files by transferring those from the CTR-700 onto the computer where they can be edited and get transferred back to the CTR-700. Downloading files onto the CTR-700 is also necessary to update the PLC firmware. (Advice: The update of *PLC firmware* is not identical with the update of the *PLC user program*. The PLC program is directly transferred to the module from the *OpenPCS* programming environment. No additional software is needed for that.)

Suitable as SFTP client would be "*WinSCP*" which is available as Open Source Software (GNU GPL). It can be downloaded from the project page: <u>http://winscp.net</u>).

4.2 Automatic execution of services on Linux start-up

There are two options to start scripts or software automatically on startup/reset of the CTR-700.

4.2.1 Extend shell script in /etc/rc.local

The start script /*etc/rc.local* will be executed automatically at startup of the system. This file can be altered by the user to execute additional shell commands. One has to keep in mind to not block the execution of the script for a long time or start long running commands in background.

4.2.2 Add a systemd service

System service files have to be added in */etc/systemd/system/<YOUR_ SERVICE >.service*. The service-file has to contain at least the following options:

```
[Unit]
Description=<YOUR_SERVICE_DESCRIPTION>
[Service]
ExecStart=/usr/bin/YOUR_SERVICE
[Install]
WantedBy=multi-user.target
```

Description is the name for the service and ExecStart is the path to the executable file or script.

You can add it to the autostart with the following command:

> systemctl enable YOUR_SERVICE

You can also remove it with the following command:

> systemctl disable YOUR_SERVICE

As more in-depth examples, one could look up the service files of *OpenPCS* or *Node-RED*. The official documentation can be found in the provided man-pages or on the project site of *systemd*. Important man-pages regarding system services:

- > man systemd
- > man systemd.unit
- > man systemd.service

Project homepage: https://www.freedesktop.org/wiki/Software/systemd/

4.3 OpenPCS, OPC UA and Node-RED Services

The usage of *OpenPCS, OPC UA* or *Node-RED* is only possible, if the corresponding service is running on the CTR-700. There are two ways to start *OpenPCS, OPC UA Server* or *Node-RED* on the CTR-700:

- 1. The following commands are used to manually start or stop *OpenPCS* services on the CTR-700:
 - > systemctl start openpcs-z5
 - > systemctl stop openpcs-z5
- 2. There is also the possibility to start the *OpenPCS* services automatically on PowerOn or Reset. These are the same commands as mentioned in Section 4.2.2:
 - > systemctl enable openpcs-z5
 - To disable the automatic start, the following command is used:
 - > systemctl disable openpcs-z5

There are 2 variants of the *OpenPCS* runtime service openpcs-z5 and openpcs-z4. You can choose one of them to determine the way of communicating with *OpenPCS*. (z4 for CAN bus, z5 for Ethernet / UDP).

To do the same with the OPC UA Server or Node-RED just replace openpcs with opcua-server or nodered respectively.

If the software is running on the CTR-700, you can connect with *OpenPCS* (for more Information see Table 1). Use some *OPC-UA client* to connect to the *OPC-UA Server*. To use *Node-RED*, you have to connect via a browser (e.g. *Firefox*). You have to use the assigned IP and the port 1880.

4.4 Network configuration

The CTR-700 has two network interfaces called **eth0** and **eth1**. The configuration file is */etc/network/interfaces*. The examples below use **ethX** as placeholder. Substitute **ethX** by the targeted network interface.

By default, only eth0 is configured to use DHCP. The interface eth1 has no configuration at all.

4.4.1 DHCP configuration

Add the configuration options listed below to the configuration file, to change the network interface to DHCP.

allow-hotplug ethX iface ethX inet dhcp

4.4.2 Static IP address configuration

Add the configuration options listed below to the configuration file, to change the network interface to static. Use the proper configuration for your network infrastructure.

allow	-hotplug et	:hX		
iface	ethX inet static			
	address	192.168.0.100		
	netmask	255.255.255.0		
	network	192.168.0.0		
	broadcast	192.168.0.255		
	gateway	192.168.0.1		

5 Application Development for the CTR-700

5.1 Running C# Applications via Mono

C# applications can be started like regular Linux applications by being called by their filename. An explicit call from mono is not necessary. C# .NET applications can be transferred via SFTP (see 4.1) to the CRT-700. Also, the application needs the permission added to be executable:

> chmod +x YOUR_APP_NAME

The application can then be started from its directory:

> root@ctr700:~/mono# ./CTR700_Hello_Word.exe Hello CTR-700, hello World!

5.2 Setup a OpenPCS Project for OPC UA Server

To allow the *OPC UA Server* to provide the Variables of an *OpenPCS* program one has to do some additional setup steps.

Create a new OpenPCS project with the Type SYSTEC PLC (without Visualization), give it a name and add code and variables as needed. In the *Project* panel switch to the tab *Resources*, right click on the *Resource* element in the tree view and select preferences:

Figure 5 - OpenPCS Ressource Panel

Select SYSTEC – sysWORXX CTR-700/Z5 as your Hardware Module and choose the proper Network Connection to the target device. After this compile your project. Switch the Project panel to the File view. Now you should be able to see a new file called PlcVars.txt. This file provides information for the OPC UA Server to build up the variable tree. Therefore one has to download this file to the target. To do this, right click on the file entry PlcVars.txt and select Add to current resource.

Ensure the services for *OpenPCS* and *OPC UA Server* are running on the target device (see 4.3 for the necessary steps).

Now go online and confirm downloading the Resource if necessary.

In case you get the following warning, switch to the *Resources* tab, right click on the *Files* element in the Resource tree and select "Download all files". This will make sure that the variables information of *OpenPCS* and the *OPC UA Server* are synchronized.

Figure 6 - OpenPCS warning for unsynchronized data

After all files are downloaded successfully, start the PLC application.

Now you are able to connect with an arbitrary *OPC-UA Client* to the *Server* and see the variable tree of the *OpenPCS* program. The server is able to read and write to the variables of the *OpenPCS* program.

Figure 7 - OPC UA Client Settings

	1	
▼ Server Settings - OpenPCS OPC-UA Server - None + ×		
Server Information		
Endpoint Url o	pc.tcp://192.168.10.8248020	
Security Settings		
Security Policy	None 🔹	
Message Security Mode	None 🔹	
Authentication Settings Anonymous 		
Username Password	Store	
Certificate		
Private Key		
Session Settings		
Session Name	xubuntu:UnifiedAutomation:UaExpert	
	<u>Cancel</u>	

Figure 8 - OPC UA client variables tree

5.3 I/O Driver and C/C++ Development

The user space I/O Driver of the *sysWORXX CTR-700* is installed as a standard *Debian* package called *libctr700drv*. This can be used with several programming languages including *C, Java, Java-Script* or *C*#.

The driver is installed to the following files/directories:

/usr/lib/arm-linux-gnueabihf/libctr700drv.so /usr/include/ctr700drv/ctr700drv.h /usr/share/libctr700drv Actual driver library Header-file for the driver library This directory contains examples for using the driver from C, Java, Java-Script or C#

6 OpenPCS Process Image of the CTR-700

6.1 Local in- and Outputs

Compared to other SYS TEC compact control systems, the CTR-700 obtains a process image with identical addresses. All in- and outputs listed in Table 5 are supported by the CTR-700.

I/O of the CTR-700	Address and Data ty	pe in the Process Image
DI0 DI7	%IB0.0	as Byte with DI0 DI7
	%IX0.0 %IX0.7	as single Bit for each input
DI8 DI15	%IB1.0	as Byte with DI8 DI15
	%IX1.0 %IX1.7	as single Bit for each input
AIO	%IW8.0	15Bit + sign (0 +32767)
AI1	%IW10.0	15Bit + sign (0 +32767)
AI2	%IW12.0	15Bit + sign (0 +32767)
AI3	%IW14.0	15Bit + sign (0 +32767)
C0 ⁽¹⁾	%ID40.0	31Bit + sign (-2 ³¹ - 2 ³¹ -1)
	counter input: DI24 (%	IX3.0), direction: DI21 (%IX2.5)
C1 ⁽¹⁾	%ID44.0	31Bit + sign (-2 ³¹ - 2 ³¹ -1)
	counter input: DI25 (%	IX3.1), direction: DI22 (%IX2.6)
CPU Temperature Sensor	%ID72.0	31Bit + sign as 1/10000 °C
System Temperature Sensor	%ID76.0	31Bit + sign as 1/10000 °C
DO0 DO7	%QB0.0	as Byte with DO0 DO7
	%QX0.0 %QX0.7	as single Bit for each output
DO8 DO15	%QB1.0	as Byte with DO8 DO15
	%QX1.0 %QX1.7	as single Bit for each output
REL0 and REL1	%QB2.0	as Byte with REL0 and REL1
(corresponds to DO16 DO17)	%QX2.0 %QX2.1	as single Bit for each Relay

Table 5: Assignment of in- and outputs to the process image of the CTR-700

⁽¹⁾ Counters have not yet been implemented. Full function will be added in a future update.

Advice: The CTR-700 works with Little-Endian format ("Intel-Notation). Consequently, and on the contrary to controls using Big-Endian ("Motorola-Notation), it is **possible** to sum up several BYTE variables of the process image to one WORD or DWORD and to access Bits above Bit7. The following example shows issue described:

bInByte0	AT %IB0.0 : BYTE;				
bInByte1	AT %IB1.0 : BYTE;				
wInWord0	AT %IW0.0 : WORD;				
wInWord0.	0 == bInByte0.0	due to	Little-Endian:	wInWord0.0 <>	bInByte1.0
wInWord0.	8 == bInBytel.0	due to	Little-Endian:	wInWord0.8 <>	bInByte0.0

In- and outputs of the CTR-700 are not negated in the process image. Hence, the H-level at one input leads to value "1" at the corresponding address in the process image. Contrariwise, value "1" in the process image leads to an H-level at the appropriate output.

6.2 Network variables for CAN1

Contrary to interface CAN0, interface CAN1 of the CTR-700 is designed as static object dictionary. Thus, at interface CAN1 the CTR-700 acts as a CANopen I/O device. All static network variables for CAN1 are accessible via the marker section of the process image.

On the contrary to interface CAN0, interface CAN1 is provided as static object dictionary. This means that the amount of network variables (communication objects) and the amount of PDOs available are both strongly specified. During runtime, the configuration of PDOs is modifiable. This implies that communication parameters used (CAN Identifier, etc.) and the allocation of network variables to each Byte of a CAN telegram (mapping), can be set and modified by the user. Thus, only the amount of objects (amount of network variables and PDOs) is strongly specified in the static object dictionary. Consequently, application and characteristics of objects can be modified during runtime. For this reason, at interface CAN1 the CTR-700 acts as a CANopen I/O device.

All network variables of the PLC program are available through the marker section of the process image. Therefore, 252 Bytes are usable as input variables and also 252 Bytes as output variables. To enable any data exchange with other CANopen I/O devices, the section of static network variables is mapped to different data types in the object dictionary (BYTE, SINT, WORD, INT, DWORD, DINT). Variables of the different data types are located within the same memory area which means that all variables represent the same physical storage location. Hence, a WORD variable interferes with 2 BYTE variables, a DWORD variable with 2 WORD or 4 BYTE variables. Figure 9 shows the positioning of network variables for CAN1 within the marker section.

	CAN1	Input Va	riables														
	CAN1 IN0	CAN1 IN1	CAN1 IN2	CAN1 IN3	CAN1 IN4	CAN1 IN5	CAN1 IN6	CAN1 IN7		CAN1 IN244	CAN1 IN245	CAN1 IN246	CAN1 IN247	CAN1 IN248	CAN1 IN249	CAN1 IN250	CAN1 IN251
BYTE / SINT, USINT	%MB 0.0 (Byte0)	%MB 1.0 (Byte1)	%MB 2.0 (Byte2)	%MB 3.0 (Byte3)	%MB 4.0 (Byte4)	%MB 5.0 (Byte5)	%MB 6.0 (Byte6)	%MB 7.0 (Byte7)		%MB 244.0 (Byte244)	%MB 245.0 (Byte245)	%MB 246.0 (Byte246)	%MB 247.0 (Byte247)	%MB 248.0 (Byte248)	%MB 249.0 (Byte249)	%MB 250.0 (Byte250)	%MB 251.0 (Byte251)
WORD / INT, UINT	%N 0. (Woi	/W O rd0)	%N 2. (Wo	/W .0 rd1)	%N 4. (Wo	1W 0 rd2)	%MW 6.0 (Word3)			%N 244 (Word	/W 4.0 ±122)	%N 246 (Word	1W 5.0 1123)	%N 248 (Word	/W 3.0 1124)	%N 25 (Wor	/W 0.0 ±125)
DWORD / DINT, UDINT		%N 0. (Dwo	MD .0 prd0)		%MD 4.0 (Dw ord1)		ſ		%1 24 (Dw c	MD 4.0 rd61)			% 24 (Dw c	MD 8.0 rd62)			

Figure 9: Positioning of network variables for CAN1 within the marker section

	CAN1 Output Variables															
	CAN1 OUT0	CAN1 OUT1	CAN1 OUT2	CAN1 OUT3	CAN1 OUT4	CAN1 OUT5	CAN1 OUT6	CAN1 OUT7	 CAN1 OUT244	CAN1 OUT245	CAN1 OUT246	CAN1 OUT247	CAN1 OUT248	CAN1 OUT2490	CAN1 DUT250	CAN1 OUT251
BYTE / SINT, USINT	%MB 256.0 (Byte0)	%MB 257.0 (Byte1)	%MB 258.0 (Byte2)	%MB 259.0 (Byte3)	%MB 260.0 (Byte4)	%MB 261.0 (Byte5)	%MB 262.0 (Byte6)	%MB 263.0 (Byte7)	%MB 500.0 (Byte244)	%MB 501.0 (Byte245)	%MB 502.0 (Byte246)	%MB 503.0 (Byte247)	%MB 504.0 (Byte248)	%MB 505.0 (Byte249)	%MB 506.0 (Byte250)	%MB 507.0 (Byte251)
WORD / INT, UINT	%N 256 (Wor	1W 5.0 rd0)	%N 258 (Wo	1W 3.0 rd1)	%N 260 (Wor	IW).0 ^{rd2)}	%MW 262.0 (Word3)		 %N 50 (Wor	/IW 0.0 d122)	W %MW .0 502.0 122) (Word123)		%MW 504.0 (Word124)		%MW 506.0 (Word125)	
DWORD / DINT, UDINT		%N 265 (Dw c	MD 5.0 ord0)		%MD 260.0 (Dw ord1)			%1 50 (Dw c	/ID 0.0 rd61)			%N 504 (Dw o	/ID 1.0 rd62)			

Table 6 shows the representation of network variables through appropriate inputs in the object dictionary of interface CAN1.

SYS TEC electronic GmbH

OD section	OD variable / EDS input	Data type CANopen	Data type IEC 61131-3						
Inputs (inputs for the CTR-700)									
Index 2000H	CAN1InByte0	Unsigned8	BYTE, USINT						
Sub 1 252	CAN1InByte251								
Index 2001H	CAN1InSInt0	Integer8	SINT						
Sub 1 252	CAN1InSInt251								
Index 2010H	CAN1InWord0	Unsigned16	WORD, UINT						
Sub 1 126	CAN1InWord125								
Index 2011H	CAN1InInt0	Integer16	INT						
Sub 1 126	CAN1InInt125								
Index 2020H	CAN1InDword0	Unsigned32	DWORD, UDINT						
Sub 1 63	CAN1InDword62								
Index 2021H	CAN1InDInt0	Integer32	DINT						
Sub 1 63	CAN1InDInt62								
Outputs (outputs for the	eCTR-700)								
Index 2030H	CAN1OutByte0	Unsigned8	BYTE, USINT						
Sub 1 252	CAN1OutByte251								
Index 2031H	CAN1OutSInt0	Integer8	SINT						
Sub 1 252	CAN1OutSInt251								
Index 2040H	CAN1OutWord0	Unsigned16	WORD, UINT						
Sub 1 126	CAN1OutWord125								
Index 2041H	CAN1OutInt0	Integer16	INT						
Sub 1 126	CAN1OutInt125								
Index 2050H	CAN1OutDword0	Unsigned32	DWORD, UDINT						
Sub 1 63	CAN1OutDword62								
Index 2051H	CAN1OutDInt0	Integer32	DINT						
Sub 1 63	CAN1OutDInt62								

Table 6: Representation of network variables for CAN1 by entries in the object dictionary

The object dictionary of interface CAN1 in total has available 16 TPDO and 16 RPDO. The first 4 TPDO and RPDO are preconfigured and activated according to the Predefined Connection Set. The first 32 Byte of input and output variables are mapped to those PDOs. Table 7 in detail lists all preconfigured PDOs for interface CAN1.

Table 7: Preconfigured PDOs for interface CAN1

PDO	CAN-ID	Data
1. RPDO	0x200 + NodelD	%MB0.0 %MB7.0
2. RPDO	0x300 + NodelD	%MB8.0 %MB15.0
3. RPDO	0x400 + NodelD	%MB16.0 %MB23.0
4. RPDO	0x500 + NodelD	%MB24.0 %MB31.0
1. TPDO	0x180 + NodeID	%MB256.0 %MB263.0
2. TPDO	0x280 + NodelD	%MB264.0 %MB271.0
3. TPDO	0x380 + NodelD	%MB272.0 %MB279.0
4. TPDO	0x480 + NodelD	%MB280.0 %MB287.0

Due to limitation to 16 TPDO and 16 RPDO, only 256 Bytes (2 * 16PDO * 8Byte/PDO) of total 504 Bytes for network variables in the marker section (2 252Bytes) can be transferred via PDO. Irrespective of that it is possible to access all variables via SDO.

The configuration (mapping, CAN Identifier etc.) of interface CAN1 typically takes place via an external Configuration Manager that parameterizes the object dictionary on the basis of a DCF file created by the CANopen configurator. By using default object inputs 1010H und 1011H, the CTR-700 supports the persistent storage and reload of a backed configuration.

Alternatively, the configuration (mapping, CAN Identifier etc.) of the static object dictionary for interface CAN1 can take place from the PLC program by using SDO function blocks. Therefore, inputs *NETNUMBER* and *DEVICE* must be used as follows:

 NETNUMBER
 := 1;
 (* Interface CAN1 *)

 DEVICE
 := 0;
 (* local Node *)

The PLC program example "*ConfigCAN1*" exemplifies the configuration of interface CAN0 through a PLC program by using function blocks of type "*CAN_SDO_Xxx*".