

Dynamic Object

Dictionary

Manual

Edition December 2014

System House for Distributed Automation

Dynamic Object Dictionary

 © SYS TEC electronic GmbH 2014 L-1087e_3

This manual includes descriptions for copyrighted products that are not

explicitly indicated as such. The absence of the trademark () symbol
does not infer that a product is not protected. Additionally, registered
patents and trademarks are similarly not expressly indicated in this manual.

The information in this document has been carefully checked and is
believed to be entirely reliable. However, SYS TEC electronic GmbH
assumes no responsibility for any inaccuracies. SYS TEC electronic GmbH
neither guarantees nor accepts any liability whatsoever for consequential
damages resulting from the use of this manual or its associated product.
SYS TEC electronic GmbH reserves the right to alter the information
contained herein without prior notification and does not accept
responsibility for any damages which might result.

Additionally, SYS TEC electronic GmbH neither guarantees nor assumes
any liability for damages arising from the improper usage or improper
installation of the hardware or software. SYS TEC electronic GmbH further
reserves the right to alter the layout and/or design of the hardware without
prior notification and accepts no liability for doing so.

 Copyright 2014 SYS TEC electronic GmbH. All rights – including
those of translation, reprint, broadcast, photomechanical or similar
reproduction and storage or processing in computer systems, in whole or in
part – are reserved. No reproduction may occur without the express written
consent from SYS TEC electronic GmbH.

Contact Direct Your local distributor

Address: SYS TEC electronic GmbH

Am Windrad 2

D-08468 Heinsdorfergrund

GERMANY

Please find a list of our

distributors under

http://www.systec-

electronic.com/distributors

Ordering

Information

:

+49 (0) 3765 / 38600-2110

info@systec-electronic.com

Technical

Support:

+49 (0) 3765 / 38600-2140

support@systec-electronic.com

Fax: +49 (0) 3765 / 38600-4100

Web Site: http://www.systec-electronic.com

3. Edition December 2014

http://www.systec-electronic.com/distributors
http://www.systec-electronic.com/distributors
mailto:info@systec-electronic.com
mailto:support@systec-electronic.com
http://www.systec-electronic.com/

Table of contents

L-1087e_3 © SYS TEC electronic GmbH 2014

Table of contents

1 Introduction .. 1

2 Basics.. 3

2.1 Structure and format of the binary DCF segment 6

2.1.1 Header segment ... 7

2.1.2 Index segment .. 8

2.1.3 Process image address segment 9

2.1.4 Extended info segment ... 10

2.1.5 Process image parameter segment 11

3 Interface to the application ... 12

4 Configuring the CANopen Stack .. 14

5 Description of the application functions 15

5.1 Function DynBuildOd ... 15

5.2 Function DynDestroyOd ... 18

6 Index entries and allocating variable offsets 19

Index .. 23

Dynamic Object Dictionary

 © SYS TEC electronic GmbH 2014 L-1087e_3

List of figures and tables

L-1087e_3 © SYS TEC electronic GmbH 2014

List of figures and tables

Figure 1: Integration of dynamic process variables for CANopen 4

Figure 2: PDO reconfiguration for the generation of the dynamic OD 5

Figure 3: Structure of the container for the binary DCF segment 6

Figure 4: Structure of the Header segment .. 7

Figure 5: Structure of the Index segment according to CiA DS-302 8

Figure 6: Structure of the Extended info segment 10

Figure 7: Structure of the Process image parameter segment 11

Figure 8: Example for the connection between index/subindex and
variable offset ... 22

Table 1: Access attributes for dynamic object entries 10

Table 2: Index range for network variables ... 20

List of abbreviations

DCF Device Configuration File
OD Object Dictionary
OpenPCS Programming tool of the company infoteam for

programming PLCs in a programming language
according to IEC61131-3

PDO Process Data Object
PI Process Image
PLC Programmable Logic Control
ro Read only, read permission
rw Read and write permission
SDO Service Data Object

Dynamic Object Dictionary

 © SYS TEC electronic GmbH 2014 L-1087e_3

Introduction

L-1087e_3 © SYS TEC electronic GmbH 2014 1

1 Introduction

An existing static object dictionary can be extended by PDOs and process
variables with module CcmDyn.c. This extension of the object dictionary is
called dynamic object dictionary.
The configuration of an object dictionary is another application for the
module. Object entries to be complemented and default values of entries
are filed in the compact format “Concise configuration storage" according
to CiA DS-302.

Dynamic Object Dictionary

2 © SYS TEC electronic GmbH 2014 L-1087e_3

Basics

L-1087e_3 © SYS TEC electronic GmbH 2014 3

2 Basics

The object dictionary of a CANopen device consists of a static part and
can be complemented by a dynamic part. The static part is defined in the
firmware and contains all basic communication objects (SDO, Heartbeat,
Emergency, PDOs). The dynamic part of the object dictionary is optional
and can be used to add more process variables and PDOs. For a dynamic
object dictionary, object entries are generated once during runtime.
Afterwards, they can be accessed in the same way as static object entries
are accessed.

The DCF file (Device Configuration File) for a CANopen node which is
generated during a network configuration builds the basis for generating a
dynamic object dictionary. The DCF file contains the configured device
data and is generated by a CANopen configurator based on an EDS file

(Electronic Data Sheet).

Figure 1 shows the integration of process variables for CANopen for the
example of an in OpenPCS programmable PLC. The module CcmDyn.c is
used for the CANopen layer for PLCs of the company SYS TEC electronic.

Dynamic Object Dictionary

4 © SYS TEC electronic GmbH 2014 L-1087e_3

EDS file

CANopen

configurator

DCF file

DCF parser

Linker /

HW-Config

PLC program w ith

 binary DCF segment

PLC

runtime

system

CANopen

layer

Table w ith

network variables

Binary

DCF segment

Binary

DCF segment

Netzwork

process image

PCD file ("PLC-EXE")

other

extended

segments

Reading and Analyzing

 the DCF file

O F F L I N E O N L I N E

Figure 1: Integration of dynamic process variables for CANopen

PC-sided the "DCF-Parser" (Dcf2Bin.dll) is in charge of reading and
evaluating DCF information. Firstly, it reads all relevant sections of the
DCF file and sets up an abstract, binary data structure. It serves as basis
for dissolving references to network variables and for generating CANopen
control information in the form of binary DCF segments. Upon download of
the PLC program, the binary DCF segment reaches the control and from
there is transferred to the CANopen layer.

For further information like the application programming interface, please
refer to the readme.txt file accompanied with the Dcf2Bin.dll.

With the help of the binary DCF segment, new object entries and existing
(static) entries can be parameterized. This also includes the
reconfiguration of existing PDO objects. Figure 2 exemplifies this
procedure.

Basics

L-1087e_3 © SYS TEC electronic GmbH 2014 5

PDO configuration

Read binary DCF segment and

store it into index array

Index = PDO-Index ?

w IdxCounter = 0

Does the index already

exist in OD?

Create new PDO in ODReconfigure existing PDO in OD

End

Read index w IdxCounter

from index array

End of index arrays

reached?

w IdxCounter = w IdxCounter + 1

Index = PDO-Index ?

Yes

No

Yes

No

Write the value to existing object

No

Yes

No

Yes

Create new object in OD

Figure 2: PDO reconfiguration for the generation of the dynamic OD

Advice: PDOs that are reconfigured by the dynamic object dictionary
receive their original default values of the static object dictionary when the
dynamic OD is destroyed.

Dynamic Object Dictionary

6 © SYS TEC electronic GmbH 2014 L-1087e_3

2.1 Structure and format of the binary DCF segment

The binary DCF segment forms a container structure for receiving more
embedded segments. It contains as subset (index segment) the concise
DCF file ("Concise configuration storage") which is a structure defined
according to CiA Standard DS-302. Figure 3 shows the structure of the
container for the binary DCF segment.

Header segment

Index segment

Process Image address segment

Extended information segment

Process Image parameter segment

Figure 3: Structure of the container for the binary DCF segment

The binary DCF segment is also used for describing network variables for
PLCs. For this task, segments „Process Image address segment“ and
„Process Image parameter segment“ are necessary. Those segments are
described in the following sections, even though these segments may not
apply for the generation of a dynamic object dictionary. The entries in the
Header segment then can be set to zero.

Basics

L-1087e_3 © SYS TEC electronic GmbH 2014 7

2.1.1 Header segment

The Header segment contains the length of each segment and the total
length of the Container segment. Figure 4 describes the segment structure.

DWORD Size of binary DCF segment

WORD Version

WORD Number of segments

DWORD Offset Index-Segment

DWORD Size Index-Segment

DWORD Offset Process Image Adress-Segment

DWORD Size Process Image Adress-Segment

DWORD Offset Extended Info-Segment

DWORD Size Extended Info-Segment

DWORD Offset Process Image Parameter-Segment

DWORD Size Process Image Parameter-Segment

Figure 4: Structure of the Header segment

The total length is the sum of all lengths of each single segment (including
the length of the Header segment).

All values are entered in the Little-Endian-Format (LSB first). The offset
value and the segment length must be set to zero for optional segments
that are not used.

Dynamic Object Dictionary

8 © SYS TEC electronic GmbH 2014 L-1087e_3

2.1.2 Index segment

The structure of the Index segment corresponds to the definition for a
shortened DCF file ("Concise configuration storage") according to CiA
Standard DS-302. Figure 5 describes the segment structure.

. . . .

WORD Index n

BYTE Subindex n

DWORD Data size of paramete n

BYTE-Array Data of parameter n

WORD Index 1

BYTE Subindex 1

DWORD Data size of parameter 1

BYTE-Array Data of parameter 1

DWORD Number of supported entries

Figure 5: Structure of the Index segment according to CiA DS-302

Advice:
There must be a PDO mapping parameter object for each PDO
communication parameter object, e.g. 0x1400 requires object 0x1600 and
0x1801 requires object 0x1A01.
Objects within the address range 0xA000-0xAFFF are always generated
as process variables with the following attributes:

NUMERIC_VALUE, READ_PERMISSION, WRITE_PERMISSION,
PDO_MAPP_PERMISSION

If the Process image address segment and a process image (network
process image) exist, the variables are placed within this memory area.

Basics

L-1087e_3 © SYS TEC electronic GmbH 2014 9

2.1.3 Process image address segment

The Address segment is an optional part of the binary DCF segment and
does not necessarily have to be in the container structure. But the segment
is needed when object entries are placed in index range 0xA000-0xAFFF
within a network process image.

Background:
The offsets of each variable in the network process image result from their
index and subindex. Section 6 describes the algorithm to calculate variable
offsets according to CiA Standard DS-302. The variable offset again is
provided in the Address segment and forms a redundant data structure.

Upon reading and evaluating the DCF information on the PC side by the
"DCF-Parser" (Dcf2Bin.dll), the necessary address calculation takes place
by using index and subindex according to the standard. On the PC side,
those addresses are used by the linker to solve references to network
variables. This also sets the positioning and arrangement of the variables
in the network process image. The CANopen layer of the PLC must also
use the addresses used for the PLC program (irrespective if those have
been calculated norm-compliant or not). If not, there may be
inconsistencies between the PLC program/run-time system and the
CANopen layer when using the network process image.

To ensure a consistent usage of the network process image between PLC
program/run-time system and CANopen layer, PLC-sided the Address
segment generated by the "DCF-Parser" (if available) is used for the setup
of the dynamic object dictionary. The Address segment is a WORD field
which contains an address offset for each variable generated in the
network process image.

The Address segment is always available when using the programming
system OpenPCS, because the necessary address calculation is needed
on the PC side to solve references of network variables. Generally, the
functionality that is necessary to set up and administer a dynamic object
dictionary can also be used independently from the PLC system. Then the
setup of the binary DCF segment takes place by an external component. In
this case, it could also be possible that the Address segment is not
applicable and the necessary address calculation must take place on the
local target system.

Dynamic Object Dictionary

10 © SYS TEC electronic GmbH 2014 L-1087e_3

2.1.4 Extended info segment

The Extended info segment is a BYTE field which contains the appropriate
access attributes for each subindex in the Index segment.

. . . .

BYTE Attribute Index 1, Subindex 1

BYTE Attribute Index 1, Subindex 2

BYTE Attribute Index x, Subindex y

BYTE ...

Figure 6: Structure of the Extended info segment

The attributes are defined as bit-masks and can be combined with one
another. This could be:

Attribute Value Description

BOOLEAN 0x01 The object entry is defined as
BOOLEAN.

VISIBLE_STRING 0x08 The object entry is defined as
VISIBLE_STRING. The data byte by
byte is copied into the object entry.

NUMERIC_VALUE 0x10 The object entry is defined as
NUMERIC_VALUE. The data is
generated either LSB-first or MSB-
first according to the target.

READ_PERMISSION 0x20 Reading the object entry is
permitted.

WRITE_PERMISSION 0x40 Writing the object entry is permitted.

PDO_MAPP_PERMISSION 0x80 Mapping the object entry into a PDO
is permitted.

Table 1: Access attributes for dynamic object entries

If the attributes BOOLEAN, VISIBLE_STRING or NUMERIC_VALUE are
not defined, the object entry is interpreted as DOMAIN. This implies that
data is copied byte by byte from the Index segment of the respective object
entry.

Basics

L-1087e_3 © SYS TEC electronic GmbH 2014 11

Examples:

Value Description

0x70 Numeral value with read and write permission

0x60 Domain with read and write permission

0xF0 Numeral value with read and write permission, mappable into a
PDO

0x30 Numeral value with read permission only

2.1.5 Process image parameter segment

This segment contains information about an existing process image
(network process image). The segment structure is described in Figure 7.

DWORD Complete size of dyn. Process Image

DWORD Offset of input area

DWORD Size of input area

DWORD Offset of output area

DWORD Size of output area

Figure 7: Structure of the Process image parameter segment

This segment is not needed to generate dynamic object entries.

Dynamic Object Dictionary

12 © SYS TEC electronic GmbH 2014 L-1087e_3

3 Interface to the application

To generate a dynamic object dictionary, a binary DCF segment as
described in section 2.1 must be loaded into the Target.1 This data

structure is transferred as parameter to function DynBuildOd. The
function adds to the existing static object dictionary the dynamic object
entries and stores the data in the object entries.

Adding object entries requires a dynamic memory administration. With the
help of macros (COP_MALLOC, COP_FREE), platform-specific functions
such as malloc or free can be mounted. Adjustments to the macros take
place in file target.h.

Through the dynamic OD it is possible that more PDOs are defined.
Existing PDOs in the static object dictionary are set to invalid prior to
generating a new PDO. This causes the lost of parameters for the PDO
linking. After generating the object dictionary those PDOs again must be
linked.

Storing object data of dynamic object entries in a non-volatile memory (e.g.
EEPROM) is not supported by the module CcmStore.

For dynamic index entries, callback functions cannot be used in connection
with accesses via SDO or with the help of API functions ObdWriteEntry()
and ObdReadEntry() or CcmWriteObject() and CcmReadObject().

Creating the dynamic object dictionary should take place after calling
CcmConnectToNet(). Object entries are generated and PDOs are added.

Recurrent loading of the binary DCF segment into the target and
generation of the dynamic object dictionary requires that the existing
dynamic object dictionary was logged out and the dynamic allocated

memory was released. This task is done by function DynDestroyOd.

The following source code extract exemplifies this procedure. The
complete source including the binary DCF segment are located in file
ex_dynod.c.

1 Generating and loading the binary DCF segment is subject to the user.

Interface to the application

L-1087e_3 © SYS TEC electronic GmbH 2014 13

// ==

// segment container (contains the build up rules of all

// objects which should be created dynamicaly and/or which should

// be updated with a new value)

// ==

static CONST BYTE ROM abSegmentContainerRom_l[] =

{

 ...

};

// memory for the Process Image (see PI-Param-Segement)

static WORD MEM awProcessImage_l[0x0020];

void main (void)

{

tCopKernel Ret = kCopSuccessful;

tProcessImageDscrpt PIDscrpt;

 // init the CANopen Stack

 Ret = CcmInitCANopen (&CcmInitParam_g, kCcmFirstInstance);

 ...

 // set CANopen from state INITIALIZATION to PRE-OPERATIONAL

 Ret = CcmConnectToNet ();

 ...

 // fill out the Process Image Descriptor

 PIDscrpt.m_pbProcessImage = (BYTE FAR*) &awProcessImage_l[0];

 PIDscrpt.m_dwProcessImageSize = sizeof (awProcessImage_l);

 // build the dynamic part of the OD

 Ret = DynBuildOd ((BYTE FAR*) &abSegmentContainerRom_l[0],

 &PIDscrpt);

 ...

 while (APP_RUN_FLAG())

 {

 // main prozess function for the CANopen stack

 CcmProcess ();

 ...

 }

 // destroy a previously build dynamic OD

 Ret = DynDestroyOd ();

 ...

}

Dynamic Object Dictionary

14 © SYS TEC electronic GmbH 2014 L-1087e_3

4 Configuring the CANopen Stack

Depending on the application of the dynamic object dictionary, constants
must be set in the configuration file CopCfg.h:

OBD_USE_DYNAMIC_OD
With the file CcmDyn.c, objects can be dynamically added (during runtime)
to the actual object dictionary. To use this feature, this Define must be set
to TRUE.

Chosen setting: TRUE
Range of value: FALSE, TRUE
Area of application: CANopen –Source code with dynamic OD

OBD_USER_OD, OBD_USE_VARIABLE_SUBINDEX_TAB
The dynamic object dictionary is processed as USER_OD. To add object
entries, variable subindex tables are necessary. Both values must be set to
TRUE.

Chosen setting: TRUE
Range of value: FALSE, TRUE
Area of application: CANopen –Source code with dynamic OD

PDO_USE_BIT_MAPPING
To add and map object entries of type BOOLEAN, the value must be set to
TRUE. Otherwise, mapping of bit values is not possible.

Chosen setting: TRUE
Range of value: FALSE, TRUE
Area of application: CANopen –Source code

PDO_GRANULARITY
To map object entries of type BOOLEAN at any place in the PDO, this
value must be set to 64. Otherwise, a maximum of 8 bit is mappable.

Chosen setting: 64
Range of value: 8, 64
Area of application: CANopen –Source code

Description of the application functions

L-1087e_3 © SYS TEC electronic GmbH 2014 15

5 Description of the application functions

5.1 Function DynBuildOd

Syntax:

#include <CcmDyn.h>

tCopKernel PUBLIC DynBuildOd (CCM_DECL_INSTANCE_HDL_

 BYTE FAR* pbDcfSegCont_p,

 tProcessImageDscrpt* pProcessImageDscrpt_p);

Parameter:

CCM_DEC_INSTANCE_HDL_: Instance-Handle

pbDcfSegCont_p: Pointer to the binary DCF segment

pProcessImageDscrpt_p: Pointer to a data structure to

describe the process image

Return:

kCopSuccessful 0x00 The function was executed
without error.

kCopIllegalInstance 0x01 The parameterized instance does
not exist.

kCopCobNoFreeEntry 0x20 No free entry was found in the
COB table. The COB could not
be created.

kCopCobAllreadyExist 0x21 No COB can be registered for
the parameterized CAN identifier
because this CAN identifier is
already used for another COB.

Dynamic Object Dictionary

16 © SYS TEC electronic GmbH 2014 L-1087e_3

kCopCobIllegalCanId 0x23 The CAN identifier does not
correspond to the value range for
an identifier and is therefore not
accepted (CAN-ID = 0 and the
29Bit identifier is not supported
by the current configuration of
the CANopen stack).

kCopObdIndexNotExist 0x31 The object index is not defined in
the current OD.

kCopObdSubindexNotExist 0x32 The object entry is not found
under the parameterized sub-
index.

kCopPdoErrorMapp 0x78 When mapping variables to a
PDO, an error was discovered as
a result of invalid object entry
parameters.

kCopDynNoMemory 0xA0 Not enough memory to build up
the dynamic OD.

kCopDynInvalidConfig 0xA1 Invalid configuration in the
Segment Container for assembly
of the OD

Description:

The function complements dynamic object entries from a binary DCF
segment. Existing object entries and data are loaded from the binary DCF
segment if those entries are available in the DCF segment.
If the function is used to generate complemented dynamic object entries
within a process image (network process image), the start address
(m_pbProcessImage) and the maximum available size of the process
image (m_dwProcessImageSize) must be transferred by using structure
tProcessImageDscrpt.

Description of the application functions

L-1087e_3 © SYS TEC electronic GmbH 2014 17

typedef struct

{

 // Address and size of process image

 BYTE FAR* m_pbProcessImage; // IN-Parameter

 DWORD m_dwProcessImageSize; // IN/OUT-Parameter

 // Offset and size of inputs

 DWORD m_dwDynPIOffsetIn; // OUT-Parameter

 DWORD m_dwDynPISizeIn; // OUT-Parameter

 // Offset and size of outputs

 DWORD m_dwDynPIOffsetOut; // OUT-Parameter

 DWORD m_dwDynPISizeOut; // OUT-Parameter

} tProcessImageDscrpt;

If the segment ProcessImage-Param is available in the binary DCF
segment, the function provides the contained parameters in structure
tProcessImageDscrpt.

Dynamic Object Dictionary

18 © SYS TEC electronic GmbH 2014 L-1087e_3

5.2 Function DynDestroyOd

Syntax:

#include <CcmDyn.h>

tCopKernel PUBLIC DynDestroyOd (CCM_DECL_INSTANCE_HDL);

Parameter:

CCM_DEC_INSTANCE_HDL: Instance-Handle

Return:

kCopSuccessful 0x00 The function was executed
without error.

kCopIllegalInstance 0x01 The parameterized instance does
not exist.

Description:

The function deletes complemented dynamic object entries and resets the
PDO module.
Before the dynamic object dictionary can be deleted, the communication
objects for the PDOs must be reset. Therefore, the NMT-Event-Function of
the PDO module must be called with event
kNmtEvPreResetCommunication.
Afterwards, the dynamic object dictionary and the generated PDO tables
are deleted and the default values for the communication parameters of
the PDOs are set in the static object dictionary.
Then, the PDO module is actuated to state PreOperational.

Index entries and allocating variable offsets

L-1087e_3 © SYS TEC electronic GmbH 2014 19

6 Index entries and allocating variable offsets

The CiA Standard DS-405 defines the index range for network variables
listed in Table 2 to be used by the IEC 61131-3. Through the programming
system OpenPCS, only parts of the possible variable types are supported.

According to the CiA Standard DS-302, the allocation of offsets for network
variables is done by the CANopen configurator. For each variable type
(data type and access direction), a separate subsegment is generated. The
positioning and size of these subsegments (PIOffset=, MaxCnt=, Range=)
within the network process image can be optionally defined by the EDS
file. If the EDS file does not contain such entries, the start offset for a
subsegment is considered as zero and the size of the subsegment adjusts
dynamically to the amount of declared variables. Process images are
generated separately for input and output variables.

Each subsegment must be interpreted as an array of the respective
variable type (BYTE, WORD, DWORD, ...). The subindex for which a
variable was generated in the DCF file, reflects its array index. Hereby
must be considered that the first subindex for a variable definition holds
value 1 while in high level language (e.g. C) the first array element holds
index 0. To get the actual array index of a variable in the process image,
the respective subindex of the variable must be decremented by value 1.
The subindex indicates the array element which is allocated to the variable
and does not indicate the absolute offset within the process image. For
example, with subindex=6 for a byte variable, the offset 5 in the process
image is addressed
 (=(6-1)*sizeof(BYTE)), but with Subindex=3 of a DWORD variable, offset
8 (=(3-1)*sizeof(DWORD)).

Dynamic Object Dictionary

20 © SYS TEC electronic GmbH 2014 L-1087e_3

Data direction Start index Data type Access

type

Usage in

OpenPCS

Input A000H Integer8 ro x

A040H Unsigned8 ro x

A080H Boolean ro -

A0C0H Integer16 ro x

A100H Unsigned16 ro x

A140H Integer24 ro -

A180H Unsigned24 ro -

A1C0H Integer32 ro x

A200H Unsigned32 ro x

A240H Float (32) ro (x)

A280H Unsigned40 ro -

A2C0H Integer40 ro -

A300H Unsigned48 ro -

A340H Integer48 ro -

A380H Unsigned56 ro -

A3C0H Integer56 ro -

A400H Integer64 ro -

A440H Unsigned64 ro -

Output A480H Integer8 rw x

A4C0H Unsigned8 rw x

A500H Boolean rw -

A540H Integer16 rw x

A580H Unsigned16 rw x

A5C0H Integer24 rw -

A600H Unsigned24 rw -

A640H Integer32 rw x

A680H Unsigned32 rw x

A6C0H Float (32) rw (x)

A700H Unsigned40 rw -

A740H Integer40 rw -

A780H Unsigned48 rw -

A7C0H Integer48 rw -

A800H Unsigned56 rw -

A840H Integer56 rw -

A880H Integer64 rw -

A8C0H Unsigned64 rw -

Table 2: Index range for network variables

Index entries and allocating variable offsets

L-1087e_3 © SYS TEC electronic GmbH 2014 21

Each index entry can manage an array with up to 254 elements for the
respective data type (BYTE, WORD, DWORD, ...). To generate more
variables, the following index entry must be used. For example, index
0A4C0H can manage the first 254 byte variables and from the 255th byte
variable the index 0A4C1H is necessary.

For the allocation of subindexes, the CANopen configurator takes into
consideration possible overlapping of subsegments. The variable offset
can be chosen so that each variable is allocated a separate memory area
according to its type. Overlapping subsegments exist if the EDS file does
not contain presetting in the form of start offsets for each variable area. In
this case, all subsegments by default start from offset zero.

The CANopen configurator places all variables of the first subsegment at
the beginning of the process image (if not all subsegments have been
displaced by the EDS file to start offsets above zero) and connects the
variables of the following subsegments at it. The subindex is an indirect
equivalent for the offset of the variables in the process image.
Consequently, the subindexes of the variables in the first subsegment start
with value 1. The subindex of the variable of all following subsegments
(variable types) depends on the memory already taken and the first
available array index for the respective variable type within the process
image (see Figure 8).

The following extract from a DCF file in combination with Figure 8
exemplifies the connection between index/subindex and offset in the
process image.

Dynamic Object Dictionary

22 © SYS TEC electronic GmbH 2014 L-1087e_3

[A4C0]

SubNumber=4

[A4C0sub0]

ParameterName=NrOfElements

[A4C0sub1]

ParameterName=IN0_IN7

[A4C0sub2]

ParameterName=IN8_IN15

[A4C0sub3]

ParameterName=IN16_IN23

[A580]

SubNumber=2

[A580sub0]

ParameterName=NrOfElements

[A580sub3]

ParameterName=AIN0

IN0_IN7 IN8_IN15 IN16_IN23

AIN0

IN0_IN7 IN8_IN15 IN16_IN23 AIN0

+0 +1 +2 +3 +4 +5

+0 +2 +4

+0 +1 +2 +3 +4 +5

Sub1 Sub2 Sub3

Sub3

Index [A4C0]

Index [A580]

Resulting netw ork process image

Figure 8: Example for the connection between index/subindex and
variable offset

Index

L-1087e_3 © SYS TEC electronic GmbH 2014 23

Index

Basics .. 3
Binary DCF segment .. 6
Configuration ... 17

DynBuildOd .. 19

DynDestroyOd .. 22
EDS file ... 3
Extended info segment .. 10
Header segment .. 7
Index segment ... 8
Interface to the application ... 13
OBD_USE_DYNAMIC_OD .. 17
OBD_USE_VARIABLE_SUBINDEX_TAB.. 17
OBD_USER_OD .. 17
PDO_GRANULARITY.. 18
PDO_USE_BIT_MAPPING .. 17
Process image address segment ... 9
Process image parameter segment .. 12

Dynamic Object Dictionary

24 © SYS TEC electronic GmbH 2014 L-1087e_3

Suggestions for improvement

L-1087e_3 © SYS TEC electronic GmbH 2014

Document: Dynamic Object Dictionary

Document number: L-1087e_3, Edition December 2014

How would you improve this manual?

Have you spot any mistake in this manual? Page

Submitted by:

Customer number:

Name:

Company:

Address:

Please send to: SYS TEC electronic GmbH
August-Bebel-Str. 29
D-07973 Greiz
GERMANY
Fax : +49 (0) 36 61 / 62 79 99

Published by

© SYS TEC electronic GmbH 2014

Best.-Nr. L-1087e_3

Printed in Germany

	1 Introduction
	2 Basics
	2.1 Structure and format of the binary DCF segment
	2.1.1 Header segment
	2.1.2 Index segment
	2.1.3 Process image address segment
	2.1.4 Extended info segment
	2.1.5 Process image parameter segment

	3 Interface to the application
	4 Configuring the CANopen Stack
	5 Description of the application functions
	5.1 Function DynBuildOd
	5.2 Function DynDestroyOd

	6 Index entries and allocating variable offsets
	Index

