

CANopen Bootloader

Software Manual

Edition August 2008

Computer retailer for distributed automation

CANopen Bootloader

 © SYS TEC electronic GmbH 2008 L-1112e_5

The designations used in this book for products that are also registered trademarks have
not been separately marked. The missing © sign does not therefore imply that the
designation is a non-registered product name. At the same time, no inference can be
made from the designation used that this refers to any pending patent or that a registered
design is protected.

The information in this manual has been carefully checked and can be assumed to be
correct and accurate. However, we expressly draw your attention to the fact that the
SYS TEC electronic GmbH company neither excepts warranty claims nor legal
responsibility, nor claims of any sort from secondary damages resulting from the use of
this manual or its content. We reserve the right to change the details specified in this
manual without notice. The SYS TEC electronic GmbH company does not thereby
incur any obligations.

Furthermore, we also expressly draw your attention to the fact that the SYS TEC
electronic GmbH company neither excepts warranty claims nor legal responsibility, nor
claims of any sort from secondary damages resulting from the incorrect use or incorrect
application of the hardware or software. The layout and/or design of the hardware may
also be changed without notice. SYS TEC electronic GmbH does not thereby incur any
obligations.

© Copyright 2008 SYS TEC electronic GmbH. All rights reserved. No part of this
manual may be reproduced, edited, copied or distributed in any form b< means of the
appropriate systems without previous written permission from the SYS TEC electronic
GmbH company.

 EUROPE NORTH AMERICA
Address: SYS TEC electronic GmbH

August-Bebel-Str. 29
D-07973 Greiz
GERMANY

PHYTEC America LLC
203 Parfitt Way SW, Suite
G100
Bainbridge Island, WA 98110
USA

Sales hotline: +49 (0) 36 61 / 62 79-0
info@systec-electronic.com

+1 (800) 278-9913
order@phytec.com

Technical hotline: +49 (0) 36 61 / 62 79-0
support@systec-electronic.com

+1 (800) 278-9913
support@phytec.com

Fax: +49 (0) 36 61 / 6 79 99 +1 (206) 780-9135

Web page: http://www.systec-electronic.com http://www.phytec.com

5th Edition August 2008

mailto:info@systec-electronic.de
mailto:order@phytec.com
mailto:support@systec-electronic.com
mailto:order@phytec.com
http://www.phytec.com/

Introduction

L-1112e_5 © SYS TEC electronic GmbH 2008

Table of contents

1 Introduction .. 1
2 References.. 2
3 Design of data transmission... 3

3.1 Checksum application.. 11
3.2 Starting the bootloader... 12
3.3 Software structure of the target.. 14

4 Interfaces ... 17
4.1 Interface to the flash .. 17

4.1.1 Interface to the timer... 22
4.1.2 Interface for NodeID .. 25
4.1.3 Application parameter .. 26

4.1.3.1 TgtGetAppInfo .. 26
4.1.3.2 TgtGetAppSize.. 26
4.1.3.3 TgtSetAppSize .. 27
4.1.3.4 TgtGetAppCrc... 27
4.1.3.5 TgtSetAppCrc.. 28
4.1.3.6 TgtCheckAppSig... 28
4.1.3.7 TgtClrAppSig .. 29
4.1.3.8 TgtSetAppSig .. 29
4.1.3.9 TgtGetAppSig ... 29
4.1.3.10 TgtGetSerialNr .. 29

4.1.4 Re-entry in the bootloader .. 29
4.1.5 Interface to the CAN bus .. 30
4.1.6 Debug outputs... 30

4.2 Configuring the bootloader.. 31
5 Flash tool ... 35

5.1 BinaryBlock-Converter.. 35
5.2 BinaryBlock-Download... 38
5.3 Configuring the flash tool software (FtCfg.h) 40
5.4 Error codes of the flash tool software (FtErrDef.h)................... 42

6 Resources... 45
6.1 Code, data target .. 45
6.2 Target interrupts... 45

CANopen Bootloader

 © SYS TEC electronic GmbH 2008 L-1112e_5

Table of figures

Figure 1: CANopen communication via objects 5

Figure 2: Data format of a block with programme data 8

Figure 3: Sequence of data transmission ... 9

Figure 4: Construction of the flash .. 11

Figure 5: Programme sequence when starting the bootloader................. 12

Figure 6: Software structure of the bootloader.. 14

List of tables

Table 1: List of CANopen objects for the bootloader.............................. 4

Table 2: Bootloader commands in index 0x1F51 6

Table 3: State of the programme download in index 0x1F57.................. 7

Table 4: Source files for the bootloader ... 15

Table 5: Meaning of the flash tool error codes 44

Introduction

L-1112e_5 © SYS TEC electronic GmbH 2008 1

1 Introduction

The CANopen Bootloader is a software package used to transfer programs
in binary format to the target hardware and to run them there using
CANopen. The functionality of the programme is geared to the
determinations set down in the CANopen Standard CiA DS-302.

The software package is comprised of two parts: the flash tools and the
bootloader. The flash tools convert the application data (S3, INTEL-Hex)
into a binary format and transfer them to the target hardware. The
bootloader receives the data transmitted by the flash tools, verifies them
and writes the data into the flash; it then starts the application that has been
transferred.

Communication and data transmission between the bootloader and the flash
tools is by means of CANopen SDO transfer.

This manual describes the mode of operation of the bootloader, the format
of the binary data and the interface to adapt the bootloader to the user
hardware.

- Interface to flash (section)
- Interface to system timer (section)
- NodeID interface if this can not be permanently configured (section.)
- Interface to re-enter the bootloader from the application (section)
- Interface to the CAN-Bus if no CAN driver exists for the selected

CAN controller (section)
- Interface to the debug outputs (section)
- Interrupt vector table interface (section)

The interface to the user hardware has been implemented as a template.

CANopen Bootloader

2 © SYS TEC electronic GmbH 2008 L-1112e_5

2 References

/1/ Framework of CANopen Manager, CiA DS-302, 2006

Design of data transmission

L-1112e_5 © SYS TEC electronic GmbH 2008 3

3 Design of data transmission

Implementation is based on the CANopen Standard CiA DS-302. This
standard defines object entries that can be used to download a programme.
The bootloader uses service data objects (SDO) for data transmission.
Depending on the application of the bootloader, the loaded data can be
programmed into a non-volatile flash memory.

The advantage of the use of CANopen SDO transfer to transmit data is that
CANopen tools can be used to programme the application. An EDS file is
required for this that maps the object entries of the CANopen nodes. The
data is transmitted in binary format and must be converted into this format
(e.g. HEX BIN) depending on the development environment.

The bootloader is a complete CANopen application and it therefore has an
object directory. However, this object directory is only visible for the time
in which the bootloader is run.

The bootloader is comprised of a target-related part and a part that
packages the communication services. The target-specific part contains the
interfaces to the flash, the CAN controller and the application. Adjustments
must be made by the user here.

SDO transfer according to CiA DS-301 is used for data transfer. This
transmission service supports protocols such as segmented transfer and
block transfer. The default setting is segmented transfer because this
service requires less CODE to be run. However, due to the
acknowledgment sequence of the data, which is segment-by-segment, the
transmission time may be slightly longer in comparison to block transfer.

CANopen Bootloader

4 © SYS TEC electronic GmbH 2008 L-1112e_5

Object
(Index/
Subidx)

Data type Attribute Meaning CiA Stan.

0x1000 Unsigned32 ro Designates the device type 301
0x1001 Unsigned8 ro CANopen error register 301
0x1018/0 Unsigned8 ro Number of sub-indices in

0x1018
301

0x1018/1 Unsigned32 ro CANopen vendor ID 301
0x1018/2 Unsigned32 ro CANopen product ID 301
0x1018/3 Unsigned32 ro Serial number 301
0x1018/4 Unsigned32 ro Revision number 301
0x1F50/0 Unsigned8 ro Number of sub-indices in

0x1F50
302

0x1F50/1 Domain wo Programme data (container up to
16384 bytes)

302

0x1F51/0 Unsigned8 ro Number of sub-indices in
0x1F51

302

0x1F51/1 Unsigned8 rw Command channel 302
0x1F56/0 Unsigned8 ro Number of sub-indices in

0x1F56
302

0x1F56/1 Unsigned32 ro Identifies the application (CRC
of the application)

302

0x1F57/0 Unsigned8 ro Number of sub-indices in
0x1F57

302

0x1F57/1 Unsigned32 ro Flash error status 302

Table 1: List of CANopen objects for the bootloader

The 0x1F50 object is used to load the programme data. The object-type is
DOMAIN and it can receive data up to a block size defined by the user.
The 0x1F51/1 object is used to run certain commands (deleting the flash,
starting the application, etc.). The 0x1F56 object contains an identification
of the application. The CRC of the application is stored here. The current
error status can be read out by object 0x1F57. Table 1 lists all CANopen
objects and their meaning.

Meaning of the sub-index
The CANopen standard defines up to 255 sub-indices for each index. Sub-
index 0 hereby contains the number of the subsequent sub-indices. A
program is assigned to each sub-index for the bootloader functionality, i.e.
it is possible to transmit up to 255 different programmes within an

Design of data transmission

application. Each programme must therefore be assigned an area within the
flash for storage. All instructions, such as delete, write, or programme for a
selected programme must be transmitted to this area with the same
reference, i.e. the same sub-index.
This implementation supports one programme and therefore only one sub-
index.

Figure 1 shows a diagram of communication via CANopen objects using
the SDO service.

Flashtool
(PC)

BootloaderSDO
Client

SDO
Server

Objects

commands (0x1F51/1)

program data (0x1F50/1)

app. ident. (0x1F56/1)

flash status (0x1F57/1)

Figure 1: CANopen communication via objects

Meaning of the commands
The bootloader on the target has a command interface. Normally it only
runs instructions requested by the host. The host transmits commands
(writing a command to object 0x1F51 or transferring a block of data to
object 0x1F50) and checks execution status using object 0x1F57.

L-1112e_5 © SYS TEC electronic GmbH 2008 5

CANopen Bootloader

6 © SYS TEC electronic GmbH 2008 L-1112e_5

The following commands can be run via index 0x1F51:

Value Command Meaning

0x00 STOP The target is instructed to stop the running
programme. This command is currently not
implemented.

0x01 START The target is instructed to start the selected
programme.

0x02 RESET_STAT The target is instructed to reset the status
(Index 0x1F57).

0x03 CLEAR The target is instructed to clear that area of
the flash that has been selected with the
appropriate sub-index.

0x80 START
BOOTLOADER

You can jump back from the application into
the bootloader using this command.
This entry must therefore also be supported
by the application to start the bootloader
(refer also to 3.2).

0x83 SET_SIGNATURE The target is instructed to flag the selected
and programmed program as „valid“. In
addition to a valid CRC and node number,
this is the requirement to start the program
automatically after a power-on-reset.

0x84 CLR_SIGNATURE The target is instructed to flag the selected
and programmed program as „invalid“. After
a power-on RESET, the application would
then not be started; the bootloader remains
active.

Table 2: Bootloader commands in index 0x1F51

Design of data transmission

L-1112e_5 © SYS TEC electronic GmbH 2008 7

The status that can be read back in index 0x1F57 can assume the following
states:

Value of state Designation Meaning

0x00000000 OK The last command transmitted has been run
without error.

0x00000001 BUSY A command is still being run.
0x00000002 NOVALPROG An attempt has been made to start an invalid

application programme.
0x00000004 FORMAT The format of binary data that have been

transferred to index 0x1F51 is incorrect.
0x00000006 CRC The CRC of the binary data is incorrect.
0x00000008 NOTCLEARED An attempt has been made to programme

although there is a valid application
programme.

0x0000000A WRITE An error occurred during the writing of the
flash.

0x0000000C ADDRESS An attempt has been made to write an invalid
address into the flash.

0x0000000E SECURED An attempt has been made to write to a
protected flash area.

0x00000010 NVDATA An error has occurred when accessing the
non-volatile memory (e.g. programming the
signature).

Table 3: State of the programme download in index 0x1F57

CANopen Bootloader

Downloading the data
The binary data of a programme is transmitted in blocks. After every
successful transmission of a block, this is written into the flash. Figure 2
shows how a block is constructed.

Offset 0x0000

Offset 0x0004

Offset 0x0008

Offset 0x000C

Block Number

Flash Address

Data Size [bytes]

n * Data Bytes

Offset 0x000C + n
Block CRC (32 bit)

max 16384 bytes

Figure 2: Data format of a block with programme data

A CAN message is already stored by the CAN controller with a CRC. A
CRC is additionally appended to each block. It is calculated based on the
block number, the flash address, the number of data bytes and the data
bytes themselves. A block that is transmitted incorrectly is repeated n times
(parameter PC tool).

Important:
Data is always transmitted in Intel format (Little Endian / LSB first). This
must be considered when creating a block.

The block number is a consecutive number starting with 0; this is increased
by 1 after every successful transmission. Block number 0 thereby always
designates the start of transmission. The host side and the bootloader are
thereby synchronised to the target. Block 0 contains control information for
the bootloader and the target (block size, flash information if required) and
not yet any programme data. Programme data is then transmitted from
block number 1. The last block always contains block number „-
1“ (0xFFFFFFFF). The application size and the application CRC is entered
in this block. After transmission of this block, the bootloader starts to
generate the CRC via the application in order to compare it. The result is

8 © SYS TEC electronic GmbH 2008 L-1112e_5

Design of data transmission

then also entered into object 0x1F56/1. The flash tool only starts the
application after this by entering the „Start“ command into object 0x1F51/1.

Flashtool SDO
Client

SDO
Server Bootloader

Block 0

Block 1

Block 2

Block -1

"Start"

Status

Status

Status

Status

.

.

.

Program
Data

aditional
info

size and
CRC

tim
e

Status

"Clear"

Figure 3: Sequence of data transmission

Procedure in principle
To transfer a new application to the target, the host (flashtools) carries out
the following procedure. In case errors occur, the whole procedure is
stopped.

1. Transforming the application into binary format (e.g. HEX -> BIN).
2. Reading object 0x1000 (devicetype) to observe if the bootloader is

active. If the value detected equals the one of the bootloader
(0x10000000), it is to be proceeded with step 4. In case of faulty
SDO-transfer with timeout, this step is to be repeated.

3. Running the command to return to the bootloader (writing the value
0x80 to object 0x1F51/1). Afterwards step 2 is to be repeated.

4. Running the command to erase the flash (writing the value 0x03 to
object 0x1F51/1).

5. Reading object 0x1F51 to observe if the erasure has been carried out.
In case of faulty SDO-transfer with timeout or if the value BUSY
was delivered back, this step is to be repeated.

6. Loading the first block of data from the binary data file.
7. Downloading the block of data to object 0x1F51/1.

L-1112e_5 © SYS TEC electronic GmbH 2008 9

CANopen Bootloader

10 © SYS TEC electronic GmbH 2008 L-1112e_5

8. Reading object 0x1F51 to observe if the writing of the blocks of data
have been carried out. In case of faulty SDO-transfer or if the value
BUSY was delivered back, this step is to be repeated.

9. If another block of data in binary format is available, read it and
proceed with step 7.

10. Running the command Starting the application (writing the value
0x01 to object 0x1F51/1).

11. Reading of object 0x1000 (devicetype) to observe if the bootloader is
still active. If the value detected equals the one of the bootloader
(0x10000000), the whole procedure is to be stopped with an error. In
case of faulty SDO-transfer with timeout, this step is to be repeated.

12. Running the command to return to the bootloader (writing the value
0x80 to object 0x1F51/1).

13. Reading of object 0x1000 (devicetype) to observe if the bootloader is
active. If the value detected does not equal the one of the bootloader
(0x10000000), the whole procedure is to be stopped with an error. In
case of faulty SDO-transfer with timeout, this step is to be repeated.

14. Running the command to place the signature (writing the value 0x83
to object 0x1F51/1).

15. Running the command Starting the application (writing the value
0x01 to object 0x1F51/1).

Timeouts
Two timeouts are relevant for transmitting the data from the host (flash tool)
to the target (bootloader). One of these is the timeout for acknowledgement
of the transmitted SDO service (an SDO transfer is always acknowledged).
This timeout is relatively short as only the delay caused by the transmission
path (bit rate, load on bus) must be considered here.
The other timeout must be selected depending on the command transmitted.
In general, a command must be completely transmitted and acknowledged
before being run. The execution time, and therefore the timeout to be
selected at the host, depends on the command in question. If necessary,
other times must be considered for deleting the flash or writing the data
than for writing a signature. The user must configure the correct timeouts.

Design of data transmission

3.1 Checksum application
A checksum is generated for each data block as well as for the entire
application area. It is assumed that the area for the application can be
mapped linearly into the address area of the CPU.

Applikation

reserviert

StartAddress

AppSize

EndAddress
Figure 4: Construction of the flash

The start address is defined as a constant in the source. The CRC as well as
the size of the application are transmitted by the host to the target in the last
block. The target stores these two values into a non-volatile memory. There
are target-specific templates for this; these must be adapted by the user. The
flash itself or an EEPROM can be used as non-volatile memory.
The CRC is calculated via the application (length of AppSize) of the
application area (for implementation, please refer to Crc32.c). The start
value is 0. StartAddress and EndAddress are stored as constants and must
be identical to the parameters used in creating the binary data.

L-1112e_5 © SYS TEC electronic GmbH 2008 11

CANopen Bootloader

3.2 Starting the bootloader

The Figure 5 shows the sequence implemented when starting the
bootloader.

reset vector

start application process bootloader

yes

no

calculate CRC-32 for
application flash

boot vector

Signature set?

CRC ok?

yes

no

clear signatur

Figure 5: Programme sequence when starting the bootloader

There are two entry points for the bootloader. After the hardware reset, the
CPU starts up the reset vector. The second entry point is an entry vector
provided by the bootloader to allow the application to activate the
bootloader. Entry via the boot vector always starts the bootloader
independent of the state of the application.

Starting the application presupposes that the CRC via the application area is
identical to the CRC calculated on the host and that is stored on the target,

12 © SYS TEC electronic GmbH 2008 L-1112e_5

Design of data transmission

L-1112e_5 © SYS TEC electronic GmbH 2008 13

that there is a valid node number (the node numbers must be within a value
area defined for this application) and that a valid signature has been stored.
If one of these conditions is not fulfilled then the target dwells in the
bootloader.

There are various ways of implementing the signature. The signature can be
stored in the flash or in another non-volatile memory (e.g. EEPROM,
NVRAM).
However, it is also possible to implement the signature using a port pin. In
all cases, if the signature is not set then the bootloader is started.

Note: There are various ways of implementing a re-entry from the
application into the bootloader. On the one hand, this depends on how a re-
entry triggered by the microcontroller itself, as well as by the compiler and
linker, are supported. Observe in this regard that when closing the
application, all of the microprocessors resources such as interrupts, DMA
channel, and on-chip periphery are released (block interrupts, end DMA
transfer, block periphery) and the system stack is reset. A simple way of
doing this is the method shown here - by triggering a RESET. However, to
do this, the signature in the non-volatile memory must be deleted
immediately beforehand. When starting the target after a RESET, one of
the conditions for starting the application is not fulfilled and the target
therefore dwells in the bootloader and waits for additional commands from
the host.
To implement a start of the bootloader via the OD, index 0x1F51 –
„Program Control“ and the RESET command (refer to Table 2) must be
implemented in the application.

CANopen Bootloader

3.3 Software structure of the target

Figure 6 shows the software structure of the bootloader.

main.c

BlCop.c

FlashDrv.cCANopen

CdrvXxx.c

other

Target.c

Figure 6: Software structure of the bootloader

14 © SYS TEC electronic GmbH 2008 L-1112e_5

Design of data transmission

L-1112e_5 © SYS TEC electronic GmbH 2008 15

File Meaning

Directory of CANopen_Bootloader
Source\main.c Contains the main() function for the bootloader
Source\BlCop.c Contains the interface functions of the bootloader
Source\Crc32.c Contains functions for calculating a 16 bit CRC
Objdicts\Objdict.* Definition of the object directory, EDS file of the

bootloader
Target\XC16x\Source\FlashDrv.c Contains functions to delete and write the flash and

must be adjusted to the target accordingly
Target\XC16x\Source\Target.c Contains the target-specific functions for deleting

and writing the signature, CRC, application size,
etc.

Target\XXX\Include\BlCopCfg.h Constants for bootloader configuration
Target\XXX\Include\CopCfg.h Constants for CANopen configuration
Target\XXX\Include\CdrvTgt.h Definition of the CAN driver

Directory of CANopen_V5
CopStack\SdosComm.c Functions for the SDO server
CopStack\Obd.c Functions for access to the object directory
CopStack\Cob.c Functions used for generating the communication

objects.
CopStack\AmiXXX.c Contains special functions for memory access
CopStack\LSSS.c Only when supported by LSS
Cdrv\CdrvXXX.c Contains driver functions for access to the CAN

controller
Cdrv\BdiTabXX.c 1 Contains a baud rate table for the CAN interface
Table 4: Source files for the bootloader

CANopen Bootloader

16 © SYS TEC electronic GmbH 2008 L-1112e_5

Interfaces

L-1112e_5 © SYS TEC electronic GmbH 2008 17

4 Interfaces

4.1 Interface to the flash

The following functions must be implemented. During in-house integration
at SYS TEC electronic, perfect function must be proven by a demonstration
programme.

a) FlsDrvInitialize function

tFlsDrvResult FlsDrvInitialize (void);

Meaning:
This function initialises the flash driver. If the internal functions can only
be run from the RAM then the required functions are copied into the RAM.
Access to these functions is then implemented by function pointers. The
function call must be implemented from within the flash driver. It is the
responsibility of the user to initialise the function pointer.

Parameters:
none

Response:
This function returns a 0 if initialisation was successful.

b) FlsDrvEraseInitialize function

tFlsDrvResult FlsDrvEraseInitialize (DWORD dwStartAddr_p, DWORD
dwEndAddr_p);

Meaning:
This function initialises the deletion of an application area. An application
area is designated by its start address and its end address and can be
comprised of one or more flash sectors/page. The start address must be
lower than the end address.

CANopen Bootloader

18 © SYS TEC electronic GmbH 2008 L-1112e_5

Parameters:
dwStartAddr_p: Start address of the application area
dwEndAddr_p: End address of the application area

Response:
This function returns a 0 if initialisation was successful.

c) FlsDrvEraseSector function

tFlsDrvResult FlsDrvEraseSector (DWORD dwSecAddr_p, DWORD *
pdwSize_p);

Meaning:
This function deletes a part of the flash within the application area (the
application area was specified by the FlsDrvEraseInitialize function using
the dwStartAddr_p, dwEndAddr_p parameter). An application area can be
comprised of several flash sectors/pages. The value dwSecAddr_p zeigt
points to the first cell to be deleted within the area. The pdwSize_p pointer
points to the size of the area to be deleted. The number of bytes to be
actually deleted is stored in *pdwSize_p.

During deletion, the FlsDrvResetWatchdog function may have to be run in
cycles to reset the watchdog.

Parameters:
dwSecAddr_p: Start address of the area to be deleted
*dwSize_p: Pointer to the size of the area

Response:
This function returns a 0 if deletion of the flash sector was successful. The
dwSize_p pointer points to the number of bytes actually deleted.

Interfaces

L-1112e_5 © SYS TEC electronic GmbH 2008 19

d) FlsDrvWriteData function

tFlsDrvResult FlsDrvWriteData (BYTE* pbData_p,
 DWORD dwStart_p, DWORD dwSize_p);

Meaning:
This function writes data in the flash area of the application. If required,
this function also cyclically calls the FlsDrvResetWatchdog function.

Parameters:
pbData_p: This pointer indicates the start address of the
 source data to be written to the
 flash.
dwStart_p: This parameter indicates the start address of the
 flash to which the source data
 is to be written.
dwSize_p: This parameter indicates the number of bytes
 to be written into the flash.

Response:
This function returns a 0 if writing to the flash was successful.

e) FlsDrvVerifyData function

tFlsDrvResult FlsDrvVerifyData (BYTE* pbData_p,
 DWORD dwStart_p, DWORD dwSize_p);

Meaning:
This data checks the data in the flash area against the transmitted data. The
function cyclically calls the FlsDrvResetWatchdog function.

Parameters:
pbData_p: This pointer indicates the start address of the
 source data to be checked against the data
 in the flash.
dwStart_p: This parameter indicates the start address of the
 flash from where the data

CANopen Bootloader

20 © SYS TEC electronic GmbH 2008 L-1112e_5

 is to be read.
dwSize_p: This parameter indicates the number of bytes
 to be checked in the flash.

Response:
This function returns a 0 if checking of the flash was successful.

f) FlsDrvReadData function

tFlsDrvResult FlsDrvReadData (BYTE** pbData_p, DWORD
*pdwStartAddr_p, DWORD *pdwSize_p);

Meaning:
This function reads out a data block. The start address is thereby
incremented by the read number of bytes. The pointer *pdwSize_p points
to the number of read bytes when quitting the function.
The function packages special features target-specific when reading the
code memory.

Parameters:
pbData_p: Pointer to the address with the read data
pdwStartAddr_p: Pointer to the start address of the block to be read in

the code memory
pdwSize_p: Pointer to the number of bytes

Response:
This function returns a 0 if deletion of the flash sector was successful.
Additionally, the start address of the next block is calculated
(pdwStartAddr_p) by the function and the actual number of read bytes is
calculated (pdwSize_p).

Interfaces

L-1112e_5 © SYS TEC electronic GmbH 2008 21

g) FlsDrvEnterCriticalSection function

void FlsDrvEnterCriticalSection (void);

Meaning:
This function blocks the global interrupt flag during the time in which the
flash is accessed. This function is required within the flash driver when
running of machine commands is not possible during deletion or when
programming data.

Parameters:
none

Response:
none

h) FlsDrvLeaveCriticalSection function

void FlsDrvLeaveCriticalSection (void);

Meaning:
This function once more releases the global interrupt flag.

Parameters:
none

Response:
none

CANopen Bootloader

22 © SYS TEC electronic GmbH 2008 L-1112e_5

i) FlsDrvResetWatchdog function

void FlsDrvResetWatchdog (void);

Meaning:
This function resets the watchdog. This function is required when the
execution period of an internal function nears the watchdog timeout.

Parameters:
none

Response:
none

4.1.1 Interface to the timer
The following functions must be implemented. If possible, the use of
interrupts should be avoided. The system time is required for monitoring
timeouts during an active SDO connection. As these times are processed
within CANopen as multiples of 100µs, the value of the timer must be
sized accordingly, even if the accuracy is only a value of 1ms.

a) TgtInitTimer

void TgtInitTimer (void);

Meaning:
This function initialises a system timer for provision of a system timing
clock of 1ms.

Parameters:
none

Response:
none

Interfaces

L-1112e_5 © SYS TEC electronic GmbH 2008 23

b) TgtStopTimer

void TgtStopTimer (void);

Meaning:
This function stops the system timer and once more releases the used
resources (timer, interrupt).

Parameters:
none

Response:
none

c) TgtTimerIsrHandler

void TgtTimerIsrHandler (void);

Meaning:
This function is called during an interrupt of the system timer in order to
increment the tick count.

Parameters:
none

Response:
none

CANopen Bootloader

24 © SYS TEC electronic GmbH 2008 L-1112e_5

d) TgtGetTickCount

tTime TgtGetTickCount (void);

Meaning:
This function returns the current value of the system timer, whereby the
return value is sized to a multiple of 100µs.

Parameters:
none

Response:
TickCount * 10 (corresponds to 100µs)

Interfaces

L-1112e_5 © SYS TEC electronic GmbH 2008 25

4.1.2 Interface for NodeID

This interface is required to provide a node number for the CANopen
device. When configuring the node number using LSS, access to a non-
volatile memory must be implemented via this interface by the user.

a) TgtGetNodeId

BYTE TgtGetNodeId (BYTE * pbNodeId_p);

Meaning:
This function returns the NodeId. This may have been set using decode
switches or it is stored permanently in the firmware. When configuring the
NodeId using LSS, this value must be read-out from a non-volatile memory.
To start the LSS service, the function 0xFF must be returned (memory is
invalid start configuration).

Parameters:
pbNodeId_p: Pointer to NodeID

Response:
0: *pbNodeId_p = 1 .. 127, 255
>0: *pbNodeId_p = invalid

b) TgtSetNodeId

BYTE TgtSetNodeId (BYTE bNodeId_p);

Meaning:
This function stores a node number configured with LSS in a non-volatile
memory.

Parameters:
Node-ID = 1 ... 127, 255

Response:
0: no error, storage successful
>0: Error code

CANopen Bootloader

26 © SYS TEC electronic GmbH 2008 L-1112e_5

4.1.3 Application parameter

4.1.3.1 TgtGetAppInfo

4.1.3.2 TgtGetAppSize

void TgtGetAppSize(DWORD GENERIC* pdwSize_p);

Meaning:
The TgtGetAppSize function reads the application size from the non-
volatile memory of the target.

Parameters:
pdwSize_p: Pointer to the variable for storing the application size

Response:
This function returns the size of the application if the value is valid.

Interfaces

L-1112e_5 © SYS TEC electronic GmbH 2008 27

4.1.3.3 TgtSetAppSize

void TgtSetAppSize(DWORD dwSize_p);

Meaning:
The TgtSetAppSize function is used to store the size of the application in a
non-volatile area of the target. The value is required to calculate the CRC
for the application area before starting the application.

Parameters:
dwSize_p: Size of application for storage

Response:
none

4.1.3.4 TgtGetAppCrc

void TgtGetAppCrc(DWORD GENERIC *pdwCrc_p);

Meaning:
The function reads the CRC of the application from the non-volatile
memory of the target. The value has been calculated on the host side and
stored on programming the application using the TgtSetAppCrc function.
The value is required to compare the CRC determined with the value at the
host side in order to start the application.

Parameters:
pdwCrc_p: Pointer to the variable for storing the CRC

Response:
This function returns the CRC calculated at the host node and stored at the
target.

CANopen Bootloader

28 © SYS TEC electronic GmbH 2008 L-1112e_5

4.1.3.5 TgtSetAppCrc

void TgtSetAppCrc(DWORD dwCrc_p);

Meaning:
This function stores the CRC in the non-volatile memory of the target. The
CRC was calculated on the host side and transmitted to the target during the
download. The CRC must be stored there non-volatile for later verification
when starting the target.

Parameters:
dwCrc_p: CRC for storage

Response:
none

4.1.3.6 TgtCheckAppSig

BYTE TgtCheckAppSig(void);

Meaning:
The signature declares the state of the application. A valid signature is the
requirement to start the application. The signature is set on request from the
host after the application has been verified. The function checks whether a
valid signature has been stored.

Parameters:
none

Response:
TRUE: The signature is valid
FALSE: The signature is invalid

Interfaces

L-1112e_5 © SYS TEC electronic GmbH 2008 29

4.1.3.7 TgtClrAppSig

4.1.3.8 TgtSetAppSig

4.1.3.9 TgtGetAppSig

static BYTE TgtGetAppSig(BYTE GENERIC *pbAppSig_p);

Meaning:

4.1.3.10 TgtGetSerialNr

The serial number is required in order to uniquely identify the target within
a CANopen network in connection with VendorID, ProductCode and
RevisionCode. The functions package the access to the non-volatile
memory of the target for reading or writing the serial number.
Storage of the serial number in non-volatile memory is not executed by the
bootloader. It is up to the user to implement the required steps.

4.1.4 Re-entry in the bootloader

TgtJumpBootloader

void TgtJumpBootloader (void);

Meaning:
This function must be linked to a fixed address to implement a re-entry to
the bootloader from the application. Before re-entry, all resources must be
released by the application and the global interrupt must be blocked.

Parameters:
none

CANopen Bootloader

30 © SYS TEC electronic GmbH 2008 L-1112e_5

Response:
none

4.1.5 Interface to the CAN bus
This interface is based on the SYS TEC CAN drivers for CANopen. The
following CAN controllers are currently supported:

Provider CAN Controller
Infineon C16x, XC16x TWIN-CAN

MultiCAN
Freescale Coldfire, PowerPC FlexCAN

TouCAN
ATMEL ARM AT91SAM7A3
Microchip dsPIC33F ECAN
NXP SJA1000

PeliCAN
Intel 82527
Renesas M16C family
Fujitsu 16LX family

4.1.6 Debug outputs
Within the source, printf functions are called up for outputting the
programme status information; outputs can be made via a serial interface
using these functions. A corresponding function that initialises the interface
is required for this.

Interfaces

L-1112e_5 © SYS TEC electronic GmbH 2008 31

4.2 Configuring the bootloader

The bootloader is configured via the BlCopCfg.h header file.

BLCOP_MAX_PROGRAMS:

This constant indicates the number of applications that can be
programmed into the flash with the bootloader. The current version of
the bootloader only supports one application.

BLCOP_MAX_PROGRAMS:

This constant indicates the number of bytes that can be transmitted to
the bootloader in a block. The block information (block number, flash
address, number of data bytes and block CRC) is included.

BLCOP_MIN_NODEID:

This constant indicates the smallest CANopen node address that is
supported by the bootloader. The smallest possible value for this
constant is 1 (limited by the CANopen Standard CiA 301).

BLCOP_MAX_NODEID:

This constant indicates the largest CANopen node address that is
supported by the bootloader. The largest possible value for this
constant is 127 (limited by the CANopen Standard CiA 301).

BLCOP_MIN_BAUIDX:

This constant indicates the smallest baud rate index that is supported
by the bootloader.

BLCOP_MAX_BAUIDX:

This constant indicates the largest baud rate index that is supported by
the bootloader.

BLCOP_SEND_BOOTUP:

This constant indicates whether or not the CANopen boot-up message
is to be transmitted. In the release version of the bootloader
(NDEBUG is defined), this constant is set to FALSE; the message is
therefore not sent.

CANopen Bootloader

32 © SYS TEC electronic GmbH 2008 L-1112e_5

BLCOP_BDI_TABLE_PTR:
This constant indicates which baud rate table is to be used. The baud
rate settings in the CAN controller vary when another CPU frequency
is set. The baud rate settings must then be re-determined.

BLCOP_BDI_TABLE_SIZE:

This constant indicates the size of the baud rate table in bytes.

BLCOP_BASE_REQUEST:

This constant indicates the base CAN identifier for the SDO request
that constitutes the actual CAN identifier together with the CANopen
node address.

BLCOP_BASE_RESPONSE:

This constant indicates the base CAN identifier for the SDO response
that constitutes the actual CAN identifier together with the CANopen
node address.

BLCOP_USE_CANCRTL:

This constant indicates which CAN interface is to be used by the
bootloader. The value 0 means CAN_A, value 1 means CAN_B and
value 2 means CAN_C.

BLCOP_USE_CANINTENABLE:

This constant indicates which function must be called to temporarily
block the CAN interrupt.

BLCOP_MAX_CANLOOPS:

This constant indicates the maximum number of CAN messages to be
evaluated from the receive buffer. As deleting the flash sectors takes a
relatively long time, this value should be set to 1.

BLCOP_IDENTITY_VENDORID:

This constant indicates the value for the Vendor ID to be written into
the 0x1018/1 object. The value 0x3F (63 decimal) indicates the SYS
TEC electronic GmbH company.

Interfaces

L-1112e_5 © SYS TEC electronic GmbH 2008 33

BLCOP_IDENTITY_PRODUCTID:
This constant indicates the value for the Product ID to be written into
the 0x1018/2 object. The value 0x0610 (value specific to SYS TEC)
indicates the CAN flash bootloader.

BLCOP_IDENTITY_REVISION:

This constant indicates the revision number to be written into the
0x1018/3 object. The value is to be indicated in the format as defined
in the CANopen Standard CiA 301. For example, the value
0x00010002 would indicate Version V1.02.

BLCOP_IDENTITY_SERIALNR:

This constant indicates the serial number to be written into the
0x1018/4 object. According to the CANopen standard, each device
must have a unique serial number. To be able to implement this, the
serial number must be read out from an EEPROM set one time during
production. For this method, the parameter dwSerialNr_p has been
reserved for the BlCopInitialize() function.

BLCOP_MAX_CRC_STEP_SIZE:

This constant indicates the maximum number of bytes should be run
through in the calculation of the CRC when running the
BlCopProcess() function. The external watchdog must be triggered
again after this call.

BLCOP_MAX_FLSWRITE_STEP_SIZE:

This constant indicates the maximum number of bytes should be run
through ifor writing the data in the flash when running the
BlCopProcess() function. The external watchdog must be triggered
again after this call.

BLCOP_BOOTLOADER_START:

This constant indicates the start address in the flash at which the
bootloader starts.

CANopen Bootloader

34 © SYS TEC electronic GmbH 2008 L-1112e_5

BLCOP_BOOTLOADER_END:
This constant indicates the last address in the flash at which there can
be bootloader code To ensure that the bootloader can be programmed
separately in the flash, this value must end at a flash sector.

BLCOP_BOOTLOADER_RAM:

This constant indicates the start address in RAM at which the interrupt
vector table starts.

BLCOP_APPLICATION_START:

This constant indicates the start address in the flash at which the
application starts. This address is the basis for calling the reset vector
of the application

BLCOP_APPLICATION_END:

This constant indicates the last address in the flash at which the
application can be programmed. This address must also include the
application CRC and the size of the application. Both parameters are
always in the last 8 bytes of the application area in the flash.

BLCOP_APPLICATION_RAM:

This constant indicates the start address in the RAM that is reserved
for the application.

FLSDRV_START_APPLICATION:

Refer to constant BLCOP_APPLICATION_START. The flash driver
receives its own constant for the start address of the application to
ensure that it can also be used in other projects.

FLSDRV_END_APPLICATION:

Refer to constant BLCOP_APPLICATION_END. The flash driver
receives its own constant for the end address of the application to
ensure that it can also be used in other projects.

Flash tool

L-1112e_5 © SYS TEC electronic GmbH 2008 35

5 Flash tool

The host application is divided into the partial application BinaryBlock-
Converter and BinaryBlock-Download.

5.1 BinaryBlock-Converter

This tool generates a block-oriented binary format from the output format
specific to the toolchain (S record, hex file, elf file). The following
parameters must be transmitted:

Call: BinaryBlockConv [options] in-file [out-file]

Options Default Meaning
-I <format_name> ihex This parameter defines the input file format.
-O <format_name> binary This parameter is reserved for future adjustments.

The output format corresponds to the block binary
format as described in this document.

--start_address
<val>

0x000000 This value defines the start address of the address
area to be considered during conversion. The value
must be indicated in C notation.

--end_address
<val>

0xFFFFFF This value defines the end address of the address
area to be considered during conversion. Values
outside of the start_address – end_address area are
not stored in the binary file. The value must be
indicated in C notation.

--block_size <val> 0x000400 This value defines the number of bytes for each
binary block. The value must be indicated in C
notation.

--gap_fill <val> val =0xFF This parameter defines the value of the byte with
which holes within a binary block are filled.

--adjust_start <val> 0x000000 The start address in the binary block can be changed
by this value. The value must be indicated in C
notation.

--help - Output of supported parameters and file formats

CANopen Bootloader

36 © SYS TEC electronic GmbH 2008 L-1112e_5

Construction of the binary file:

Block 0
Block 1

...
Block N
Block -1

Construction of block 0:

Offset Parameter Content
0x0000 Block Number 0
0x0004 Flash Address 0
0x0008 Data Size [bytes] 8
0x000C reserved
0x0010

Data bytes
reserved

0x0014 Block CRC CRC

Construction of block 1 .. N:

Offset Parameter Content
0x0000 Block Number 1 … N
0x0004 Flash Address destination address
0x0008 Data Size [bytes] n
0x000C

…
Data bytes Data

0x000C+n Block CRC CRC

Flash tool

L-1112e_5 © SYS TEC electronic GmbH 2008 37

Construction of block -1:

Offset Parameter Content
0x0000 Block Number -1
0x0004 Flash Address 0
0x0008 Data Size [bytes] 8

... reserved 32
0x0028 Size of application
0x002C

Data bytes
CRC application

0x0030 Block CRC CRC

The CRC is calculated over the entire content of a block according to the
polynomial 0xEDB88320. The start value is 0xFFFFFFFF. The same
algorithm is used to calculate the CRC for the entire application.

If an application is comprised of several partial applications then these must
be generated from one <in-file> or several in-files by entering the address
area. Each partial application must then be assigned a programme number
that corresponds to the sub-index within the object’s programme data.

CANopen Bootloader

38 © SYS TEC electronic GmbH 2008 L-1112e_5

5.2 BinaryBlock-Download

This tool transfers the binary blocks from the output file generated by the
BinaryBlockConv. This tool thereby transfers exactly one partial
application that is designated by its programme number. A USB-CAN
module is used as the interface to the CAN-bus.

Call: BinaryBlockDownload [options] in-file

Options Default Meaning
-P < val > 1 This parameter defines the programme number.

It corresponds to the sub-index for transmission
of the command and programme data.

-B <index> 4 This parameter defines the bitrate to be used via
the index. (4=125kBit/s, 3=250kBit/s)

-N < val > 1 This value defines the node address of the
selected CANopen device.

--delay < val > 1000 This value defines the delay for requesting the
status information after deleting or
programming the flash.

--repeats < val > 0x000400 This value in ms defines the number of
repetitions for requesting the status information
after deleting or programming the flash.

--ser_num <val> 0 Serial Number for configuration of node
numbers using LSS

--rev <val> 0 Revision code for configuration of node
numbers using LSS

--pcode <val> 0 Revision code for configuration of node
numbers using LSS

--vendor <val> 0x3F Vendor-ID for configuration of node numbers
using LSS

--timeout <val> 500 Max. timeout in ms for waiting from response
from the target

--help - Output of supported parameters and file formats

There is a command shell integrated into the BinaryBlockDownload tool
that allows the user to run various commands for controlling the download.

The following steps must be executed for download:

1. Start the bootloader during download

Flash tool

L-1112e_5 © SYS TEC electronic GmbH 2008 39

Starting the bootloader (re-entry into the bootloader on the target) is
repeated until a bitrate is configured and the device type of the
bootloader could be read. As the bitrate is automatically recognised it
may be that the target is not able to receive commands. This is only
possible after the bitrate can be recognised.
Furthermore, after the first time the bootloader is started, the target must
be assigned a CANopen node ID. This can be done via the LSS service.
It may also be that an application is active.
An attempt is made to start the downloader when starting the download.
This procedure is repeated until the bootloader is recognised or until it is
cancelled by the user.
2. Bootloader has been started
Delete programme and wait until it is deleted (status prompt)
3. Transmit block-for-block from the BIN file and wait until the block

is programmed (status prompt)
4. After the last block, the CRC is calculated on the target and stored in

the OD. The CRC is read-out and compared to the value on the PC.
5. If no error has previously occurred then the application can be test

run.
6. Wait a little until the application starts. Then check whether the

application has been started (read the device type and compare, read
the ident-object and compare).

7. Then switch to the bootloader and if no error has as yet been
determined (device type OK, CRC OK, Ident-Object OK, test run
OK) then set the signature and wait until it is programmed (status
prompt).

8. If there is no error then the application can be started.

CANopen Bootloader

40 © SYS TEC electronic GmbH 2008 L-1112e_5

5.3 Configuring the flash tool software (FtCfg.h)

FT_FLASH_START:

This constant has the same meaning for the flash tool as constant
BLCOP_APPLICATION_START for the bootloader.

FT_FLASH_SIZE:

This constant indicates the number of bytes in the flash area of the
application.

FT_FLASH_DEF_VAL:

This constant indicates the value received in the flash after deletion.
This value is important in the flash tool to calculate the CRC, whereby
non-programmed flash cells must also be considered.

FT_BLOCK_SIZE:

This constant has the same meaning for the flash tool as constant
BLCOP_MAX_PROGRAM_BUFFER for the bootloader.

FT_BLOCK_MAX_GAP:

This constant sets the maximum number of non-programmed bytes
before the flash tool uses a new block for downloading the subsequent
programme data. It is indented to prevent 16384 bytes having to be
transmitted in one block to the bootloader although, e.g. only the fist
and the last byte have to be programmed according to the HEX file.

FT_DEF_NODE_ID:

If the call parameter –N... is not transmitted to the flash tool, then the
HEX file is transmitted to the CANopen node address defined in this
constant. Constants FT_BASE_CANID_SDO_REQUEST ad
FT_BASE_CANID_SDO_RESPONSE are included for the CAN
identifier used.

FT_DEF_NODE_ID:

If call parameter –B... is not transmitted to the flash tool then the baud
rate index of this constant is used.

Flash tool

L-1112e_5 © SYS TEC electronic GmbH 2008 41

FT_DEF_RETRY_TIMEOUT:
This constant indicates the number of repetitions that are carried out
during SDO transfer after a timeout.

FT_DEF_RETRY_BUSY:

This constant indicates the number of repetitions carried out by SDO
transfer after the bootloader has returned the BUSY state.

FT_DEF_TIME_DELAY:

This constant indicates the time delay in 100 milliseconds steps that
the flash tool waits between reading object 0x1F57/1. This is intended
to prevent that the flash tool does not fill the CAN bus unnecessarily
with CAN messages while the bootloader is busy.

FT_DEF_SDOC_TIMEOUT:

This constant indicates the time delay in 100 milliseconds steps until
the flash tool determines a timeout during SDO transfer.

FT_BASE_CANID_SDO_REQUEST:

This constant has the same meaning for the flash tool as constant
BLCOP_BASE_REQUEST for the bootloader.

FT_BASE_CANID_SDO_RESPONSE:

This constant has the same meaning for the flash tool as constant
BLCOP_BASE_RESPONSE for the bootloader.

FT_MIN_NODE_ID:

This constant has the same meaning for the flash tool as constant
BLCOP_MIN_NODEID for the bootloader.

FT_MAX_NODE_ID:

This constant has the same meaning for the flash tool as constant
BLCOP_MAX_NODEID for the bootloader.

CANopen Bootloader

42 © SYS TEC electronic GmbH 2008 L-1112e_5

5.4 Error codes of the flash tool software (FtErrDef.h)

The error codes of functions in the flash tool and in flashtool.exe itself
(ERRORLEVEL system variable) are compatible to the POSIX standard. If
bit 30 is set in the error code then this is a user-specific error code.
Otherwise it is an error code from the operating system.

Error codes from the flash tool software begin from value 0x60000000. All
possible error codes are listed in table X.

However, if for instance the input file could not be opened then the flash
tool reads the error code from the „errno“ variable and returns it to the
console together with an appropriate error message. A list of possible error
codes is contained in the MSDN.

Error code Name: Meaning
0x00000000 No error
0x60000001 ERR_BL_NO_VALID_PROGRAM:

The bootloader reported an invalid application. This happens
when the bootloader calculates another application CRC than
the flash tool calculates.

0x60000002 ERR_BL_DATA_FORMAT_UNKNOWN:
The bootloader reported an unknown data format in block acc.
to Figure 2.

0x60000003 ERR_BL_CRC_ERROR:
The bootloader reported a CRC error in the data block.

0x60000004 ERR_BL_FLASH_NOT_CLEARED:
The bootloader reported that the flash area to be programmed
is not cleared. The blank check failed or the command to
delete the application has not been transmitted.

0x60000005 ERR_BL_FLASH_ERROR:
The bootloader has determined a general error (not specified
in more detail) when writing the data into the flash.

0x60000006 ERR_BL_ADDRESS_ERROR:
The bootloader has determined that an attempt is made to
write to the area above the flash area of the application.

0x60000007 ERR_BL_FLASH_SECURED:
The bootloader has determined that an attempt has been made
to write to the protected flash area reserved for the bootloader
itself.

Flash tool

L-1112e_5 © SYS TEC electronic GmbH 2008 43

Error code Name: Meaning
0x60000008 ERR_BL_ERROR:

The bootloader has determined an error unknown to the flash
tool.

0x60000010 ERR_NO_BOOTLOADER_RUNNING:
The flash tool can not address the bootloader. The bootloader
is possibly inactive.

0x60000011 ERR_USER_ABORT:
The user has aborted the transfer.

0x60000012 ERR_DOWNLOAD_RUNNING:
Function FtCopStartDownload() has been called although
there is still an active download to the bootloader.

0x60000013 ERR_NODE_NOT_FOUND:
An SDO timeout has been determined. The bootloader is not
responding to a request.

0x60000014 ERR_START_FAILED:
The start command could not be transferred to the bootloader.

0x60000015 ERR_PROGRAM_TOO_LARGE:
The flash tool has determined that an attempt is made to write
to the area above the flash area of the application. The
addresses in the Motorola HEX file are thereby checked.

0x60000016 ERR_FLASHING_WO_END:
The flash tool has read the flash status from the bootloader a
multiple number of times (refer to object 0x1F57/1 in
Table 1). The number of attempts has expired, but the
bootloader still reports a BUSY state. Either the value of the
constant FT_DEF_RETRY_BUSY must be increased or the
bootloader is hung.

0x60000017 ERR_INVALID_NODEID:
An API function from the FlCop.c module has been called
with an invalid CANopen node address.

0x60000018 ERR_INVALID_PARAM:
An API function from the FlCop.c module has been called
with an invalid parameter (e.g. ZERO pointer).

0x60000020 ERR_SREC_CRC_ERROR:
The flash tool has determined a checksum error in the
Motorola HEX file.

0x60000021 ERR_SREC_NO_VALID_S3:
The flash tool has determined that the indicated file does not
have the S3 format.

0x60000022 ERR_SREC_FORMAT_ERROR:
The flash tool has determined an error in the S3 format.

CANopen Bootloader

44 © SYS TEC electronic GmbH 2008 L-1112e_5

Error code Name: Meaning
0x60000023 ERR_SREC_OVERLAP:

The flash tool has determined that at least two areas overlap in
the Motorola HEX file.

0x60000024 ERR_SREC_ADDESS_RANGE:
The HEX file indicated has the S3 format, but there is no entry
in this HEX file that fits into the flash area of the application.

0x60000025 ERR_SDO_ERROR
Error during SDPO access/transfer.

0x60002001 WARN_SREC_ADDRESS_RANGE:
This warning is returned by the FtCopStartDownload() or
FtBinOpenFile() function if some entries in the Motorola HEX
file are not written into the flash area of the application. These
entries are ignored, i.e. not transferred to the bootloader. The
application may not be able to be run.

Table 5: Meaning of the flash tool error codes

All error codes from 0x60001000 flag an error code from the CANopen
stack. The meaning of the corresponding error code (minus offset
0x60001000) can be looked up in L-1020.

ResourcesResources

L-1112e_5 © SYS TEC electronic GmbH 2008 45

6 Resources

6.1 Code, data target

The actual values depend on the compiler, the memory model supported,
the optimisation level and the CPU. To run the bootloader, there should be
32kByte flash and approx. 6kByte RAM available on a 16bit system.

If the existing resources are insufficient in order to integrate the bootloader
then the software modules can be adjusted within the framework of an
adaptation workshop.

6.2 Target interrupts

The bootloader is based on the standard CAN driver for CANopen.
Receiving and sending messages as well as changing the CAN controller
status, is signalised by interrupts. If, due to additional tasks of the
microcontroller during the update procedure, the use of interrupts not be
supported, then the appropriate CAN driver routines must be adjusted by
the user. An adjustment can be made within the framework of the
adaptation workshop in cooperation with SYS TEC.
Furthermore, a system time is required; this is generally controlled by
interrupts.

As the bootloader and the applications transferred by the bootloader share
the interrupt for the CAN controller, appropriate adjustments must be made
in the form of interrupt forwarding or interrupt vector tables in the RAM.
depending o the CPU used, the interrupt vector table may have to be
mirrored. Another variation of this would be to construct this table in RAM
and every driver then enters the vector of the interrupt service routine there.
This allows the bootloader to modify the vectors when using interrupts for
the timer and the CAN controller. On starting the application, the relevant
entries are then replaced by the application vectors. When preparing to
integrate the bootloader, the respective procedure must be agreed upon and

CANopen Bootloader

46 © SYS TEC electronic GmbH 2008 L-1112e_5

an example programme is to be implemented by the project partner that
demonstrates this implementation.

Suggestions for improvement

L-1112e_5 © SYS TEC electronic GmbH 2008 47

Document: CANopen Bootloader
Document number: L-1112e_5, Edition August 2008

How would you improve this manual?

Have you found mistakes in this manual? Page

Sent by:
Customer number:
Name:
Company:
Address:

Send to: SYS TEC electronic GmbH

August-Bebel-Str. 29
D-07973 Greiz
GERMANY
Fax: +49 (0) 36 61 / 62 79 99

Published by

© SYS TEC electronic GmbH 2008
Order No. L-1112e_5
Printed in Germany

	1 Introduction
	2 References
	1
	3 Design of data transmission
	3.1 Checksum application
	3.2 Starting the bootloader
	3.3 Software structure of the target

	4 Interfaces
	4.1 Interface to the flash
	4.1.1 Interface to the timer
	4.1.2 Interface for NodeID
	4.1.3 Application parameter
	4.1.3.1 TgtGetAppInfo
	4.1.3.2 TgtGetAppSize
	4.1.3.3 TgtSetAppSize
	4.1.3.4 TgtGetAppCrc
	4.1.3.5 TgtSetAppCrc
	4.1.3.6 TgtCheckAppSig
	4.1.3.7 TgtClrAppSig
	4.1.3.8 TgtSetAppSig
	4.1.3.9 TgtGetAppSig
	4.1.3.10 TgtGetSerialNr

	4.1.4 Re-entry in the bootloader
	4.1.5 Interface to the CAN bus
	4.1.6 Debug outputs

	4.2 Configuring the bootloader

	5 Flash tool
	5.1 BinaryBlock-Converter
	5.2 BinaryBlock-Download
	5.3 Configuring the flash tool software (FtCfg.h)
	5.4 Error codes of the flash tool software (FtErrDef.h)

	6 Resources
	6.1 Code, data target
	6.2 Target interrupts

