

SYS TEC electronic GmbH - System House for Distributed Automation

SYS TEC-specific
Modbus Function Block Library

for OpenPCS

User Manual
Version 1.0

Edition February 2016

Document no.: L-1829e_01

SYS TEC electronic GmbH Am Windrad 2 D-08468 Heinsdorfergrund
Telefon: +49 (3765) 38600-0 Telefax: +49 (3765) 38600-4100

Web: http://www.systec-electronic.com Mail: info@systec-electronic.com

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 2

Status/Changes

Status: Released

Date/Version Section Changes Author/Editor

2016/02/25
1.0

all Creation
("TN_Modbus_FunctionBlockLibrary"
reworked to this User Manual)

R. Sieber

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 3

Product names used in this manual which are also registered trademarks have not been marked extra.
The missing © mark does not imply that the trade name is unregistered. Nor is it possible to determine
the existence of any patents or protection of inventions on the basis of the names used.

The information in this manual has been carefully checked and is believed to be accurate. However, it
is expressly stated that SYS TEC electronic GmbH does not assume warranty or legal responsibility or
any liability for consequential damages which result from the use or contents of this user manual. The
information contained in this manual can be changed without prior notice. Therefore, SYS TEC
electronic GmbH shall not accept any obligation.

Furthermore, it is expressly stated that SYS TEC electronic GmbH does not assume warranty or legal
responsibility or any liability for consequential damages which result from incorrect use of the hard or
software. The layout or design of the hardware can also be changed without prior notice. Therefore,
SYS TEC electronic GmbH shall not accept any obligation.

© Copyright 2016 SYS TEC electronic GmbH, D-08468 Heinsdorfergrund.
All rights reserved. No part of this manual may be reproduced, processed, copied or distributed in any
way without the express prior written permission of SYS TEC electronic GmbH.

Inform yourselves:

Contact Direct Your Local Distributor

Address: SYS TEC electronic GmbH
Am Windrad 2
D-08468 Heinsdorfergrund
GERMANY

Please find a list of our
distributors under:

http://www.systec-
electronic.com/distributors

Ordering
Information:

+49 (0) 37 65 / 38 600-0
info@systec-electronic.com

Technical Support: +49 (0) 37 65 / 38 600-0
support@systec-electronic.com

Fax: +49 (0) 37 65 / 38 600-4100

Web Site: http://www.systec-electronic.com

1st Edition February 2016

mailto:info@systec-electronic.com
mailto:support@systec-electronic.com
http://www.systec-electronic.com/

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 4

Table of Contents

1 Introduction ...6

2 Modbus Overview and Basics ...7
2.1 Modbus Function Overview ... 7
2.2 Modbus Master Basics ... 8
2.3 Modbus Slave Basics ... 9

3 Error Codes of Modbus Function Blocks .. 10

4 Type Definitions for Modbus Function Blocks ... 12
4.1 Data Type HMODBUS ... 12
4.2 Enum MODBUS_DEV_TYPE .. 12
4.3 Enum MODBUS_OBJ_TYPE .. 13
4.4 Structure MODBUS_DATA_POINT_Xxx ... 13

4.4.1 Structure MODBUS_DATA_POINT .. 13
4.4.2 Structure MODBUS_DATA_POINT_VAR_REF ... 14

4.5 Representation of PLC Variables on Modbus .. 15

5 Function Blocks ... 16
5.1 Synchronization between the Modbus Function Blocks and PLC Program 16
5.2 Function Block MODBUS_OPEN_INSTANCE .. 17
5.3 Function Block MODBUS_CLOSE_INSTANCE .. 20
5.4 Function Block MODBUS_REGISTER_VAR_LIST ... 21
5.5 Function Block MODBUS_READ_REGS .. 23
5.6 Function Block MODBUS_WRITE_SINGLE_REG .. 24
5.7 Function Block MODBUS_WRITE_MULTI_REGS .. 25
5.8 Function Block MODBUS_READ_WRITE_REGS ... 26
5.9 Function Block MODBUS_READ_INPUT_REGS ... 27
5.10 Function Block MODBUS_READ_DISCR_INPUTS .. 28
5.11 Function Block MODBUS_READ_COILS .. 29
5.12 Function Block MODBUS_WRITE_SINGLE_COIL ... 30
5.13 Function Block MODBUS_WRITE_MULTI_COILS ... 31
5.14 Function Block MODBUS_RAW_PDU_REQUEST ... 32

6 Index .. 34

Appendix A: Mapping PLC Variables to Modbus Registers ... 35

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 5

List of Tables

Table 1: Overview of Function Blocks for Modbus .. 7
Table 2: Error Codes of Modbus Function Blocks used for output ERROR ... 10
Table 3: Error Info Codes of Modbus Function Blocks used for output ERROR_INFO 10
Table 4: Description of MODBUS_DEV_TYPE ... 12
Table 5: Mapping PLC Variables to Modbus Registers .. 35

List of Figures

Figure 1: Process synchronization between Function Block and PLC Program 16
Figure 2: Structure of Transmit and Receive Raw PDU .. 33

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 6

1 Introduction

This manual describes the application of the Modbus Function Block Library for OpenPCS. It
describes the date types, functions and function blocks provided by the library. This library allows a
PLC program for data exchange with other devices via Modbus protocol. The implementation supports
Modbus/RTU as well as Modbus/TCP.

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 7

2 Modbus Overview and Basics

2.1 Modbus Function Overview

The Modbus extension is fully integrated in the PLC runtime system. It supports the following
functions:

 Modbus RTU Master

 Modbus RTU Slave

 Modbus TCP Master

 Modbus TCP Slave

Table 1 shows an overview of the IEC61131-3 function blocks for Modbus. All components are
realized as manufacturer-specific function blocks and therefore as a part of the PLC firmware.

Table 1: Overview of Function Blocks for Modbus

Function Block Master
Slave

Fnct.
Code

Data
Width

Meaning Sect.

MODBUS_OPEN_INSTANCE M / S Open a new
communication instance;
the returned Handle is
required for all other
function blocks

5.2

MODBUS_CLOSE_INSTANCE M / S Close a communication
instance

5.3

MODBUS_REGISTER_VAR_LIST S Register a list of PLC
variables which should be
linked to Modbus registers
in Slave Mode

5.4

MODBUS_READ_REGS M 03H 16 bit
word

Read multiple holding
registers
(e.g. configuration
registers)

5.5

MODBUS_WRITE_SINGLE_REG M 06H 16 bit
word

Write single holding
register
(e.g. configuration register)

5.6

MODBUS_WRITE_MULTI_REGS M 10H 16 bit
word

Write multiple holding
registers
(e.g. configuration
registers)

5.7

MODBUS_READ_WRITE_REGS M 17H 16 bit
word

Read and Write multiple
holding registers in a
single Modbus transaction
(e.g. configuration
registers)

5.8

MODBUS_READ_INPUT_REGS M 04H 16 bit
word

Read multiple input
registers
(e.g. analog inputs)

5.9

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 8

Function Block Master
Slave

Fnct.
Code

Data
Width

Meaning Sect.

MODBUS_READ_DISCR_INPUTS M 02H 1 bit Read multiple discrete
input registers
(e.g. digital inputs)

5.10

MODBUS_READ_COILS M 01H 1 bit Read multiple coils
(e.g. read back digital
outputs)

5.11

MODBUS_WRITE_SINGLE_COIL M 05H 1 bit Write single coil
(e.g. digital output)

5.12

MODBUS_WRITE_MULTI_COILS M 0FH 1 bit Write multiple coils
(e.g. digital outputs)

5.13

MODBUS_RAW_PDU_REQUEST M Exchanges raw PDU
telegrams with a Modbus
Slave device

5.14

2.2 Modbus Master Basics

Using the PLC as Modbus Master, the PLC program can read and write registers on remote slave
devices using the following Modbus master specific function blocks:

 MODBUS_READ_REGS

 MODBUS_WRITE_SINGLE_REG

 MODBUS_WRITE_MULTI_REGS

 MODBUS_READ_WRITE_REGS

 MODBUS_READ_INPUT_REGS

 MODBUS_READ_DISCR_INPUTS

 MODBUS_READ_COILS

 MODBUS_WRITE_SINGLE_COIL

 MODBUS_WRITE_MULTI_COILS

 MODBUS_RAW_PDU_REQUEST

Each of the listed function blocks above has an input parameter SLAVE_ADDR. The usage of this
slave address depends on the communication type:

Modbus/RTU: On Modbus/RTU the master is connected to its slave devices on a serial bus

(commonly a RS-485 bus). The handle for the communication instance created
by function block MODBUS_OPEN_INSTANCE is related to the local serial
interface only. The communication parameter string COMM_PARAMS of
function block MODBUS_OPEN_INSTANCE (see section 5.2) specifies only
communication parameters for the local serial interface such as interface
number and baudrate. Thus, in case of Modbus/RTU the parameter
SLAVE_ADDR of the master specific function blocks defines the device address
of the remote slave on the serial bus. Valid slave addresses are in range 1..247.
The address 0 can be used for broadcast messages.

Modbus/TCP: On Modbus/TCP the slave device is unequivocally addressed by its IP address

and port number. Both values are already set in the communication parameter
string COMM_PARAMS of function block MODBUS_OPEN_INSTANCE (see
section 5.2). Thus, in case of Modbus/TCP the parameter SLAVE_ADDR of the
master specific function blocks must be set to 255.

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 9

Exception: If the target device is reachable only via a gateway, then the IP
address and port number specified with the communication
parameter string COMM_PARAMS addresses the gateway and
SLAVE_ADDR defines the slave device address in the
destination network.

Using the PLC as Modbus Master requires the following steps:

(M1) Open a Modbus instance by calling the function block MODBUS_OPEN_INSTANCE (see

section 5.2); on input DEV_TYPE either MBDT_TCP_MASTER or MBDT_RTU_MASTER has
to be defined (see section 4.2)

(M2) Call a Modbus master specific function block, using the instance handle created in step (M1)

and setting parameter SLAVE_ADDR as described above.

2.3 Modbus Slave Basics

Using the PLC as Modbus Slave, the PLC program can register a set of PLC variables which should
be accessible from a remote master. The runtime configuration of a single variable is described in the
PLC structure MODBUS_DATA_POINT (resp. MODBUS_DATA_POINT_VAR_REF, see section 4.4).
This structure includes the following information:

 Modbus object type (discrete input, coil, input register, holding register)

 Modbus register number

 Pointer to PLC variable

The individual MODBUS_DATA_POINT structures for each variable are joined together in an array. By
adjusting the array size the user can link as many variables as needed to the Modbus stack. The
whole array is registered to the Modbus stack by calling the function block
MODBUS_REGISTER_VAR_LIST (see section 5.4).

The structure MODBUS_DATA_POINT in conjunction with the FB MODBUS_REGISTER_VAR_LIST
provides a maximum flexibility to the user for designing its individual Modbus Slave register layout.

Using the PLC as Modbus Slave requires the following steps:

(S1) Open a Modbus instance by calling the function block MODBUS_OPEN_INSTANCE (see

section 5.2); on input DEV_TYPE either MBDT_TCP_SLAVE or MBDT_RTU_SLAVE has to be
defined (see section 4.2)

(S2) Create the slave variables list as ARRAY[x..y] OF MODBUS_DATA_POINT (see section 4.4)

(S3) Register the slave variables list registered to the Modbus stack by calling the function block

MODBUS_REGISTER_VAR_LIST (see section 5.4); the Modbus instance handle created in
step (S1) binds to variables list to the dedicated interface.

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 10

3 Error Codes of Modbus Function Blocks

Table 2 lists the Error Codes used by all function blocks of type MODBUS_Xxx for output ERROR.

Table 2: Error Codes of Modbus Function Blocks used for output ERROR

Error Code Meaning

0 FB execution was successfully, no error occurred

1
Invalid parameter (e.g. structure has an unexpected size; enumerator has an
unknown value etc.)

2 Pointer references an object with an unsupported data type

3 Out of resources (e.g. out of memory, or not more instances available)

4 A slave instance with requested connection already exists

5 Requested resource is busy

6 Connection to remote node failed

7 Master request failed (e.g. timeout)

8 Invalid handle

9
Size of variable in User/PLC program doesn't match with number of registers to
read/write

10 Requested function only available for Master (requires handle for Master instance)

11 Requested function only available for Slave (requires handle for Slave instance)

12 Invalid data point configuration for ModBus slave variable

255 Function not implemented on the PLC

Table 3 lists the Error Info Codes used by all Modbus master function blocks for output ERROR_INFO.
These codes are the internal error codes of the underlying Modbus protocol stack.

Table 3: Error Info Codes of Modbus Function Blocks used for output ERROR_INFO

Error Code Meaning

0 No error

1 Illegal register address

2 Illegal argument

3 Porting layer error

4 Insufficient resources

5 I/O error

6 Protocol stack in illegal state

7 Retry I/O operation

8 Timeout error occurred

10 Illegal function exception

11 Illegal data address

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 11

Error Code Meaning

12 Illegal data value

13 Slave device failure

14 Slave acknowledge

15 Slave device busy

16 Memory parity error

17 Gateway path unavailable

18 Gateway target device failed to respond

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 12

4 Type Definitions for Modbus Function Blocks

All types shown in this section are defined global in the OpenPCS Programming System environment.
They must not be redeclared in the User/PLC program. All of this global defined Modbus types can be
used within User/PLC program as common standard types, e.g. INT or POINTER.

4.1 Data Type HMODBUS

The data type HMODBUS is globally defined in OpenPCS. It is used as a "Handle to Modbus
Instance". It is returned by function block MODBUS_OPEN_INSTANCE (see section 5.2) and is used
as input parameter for all other function blocks.

 TYPE

 HMODBUS : DINT;

 END_TYPE

4.2 Enum MODBUS_DEV_TYPE

The enumerator MODBUS_DEV_TYPE is globally defined in OpenPCS. It is specifies the kind of
Modbus Instance for the own device. It is used to create a new instance by calling the function block
MODBUS_OPEN_INSTANCE (see section 5.2).

 GLOBAL_TYPE_BEGIN

 TYPE

 MODBUS_DEV_TYPE :

 (MBDT_NOT_SET, (* 0: Device Type uninitialized / not set *)

 MBDT_TCP_SLAVE, (* 1: Device is ModBus TCP Slave *)

 MBDT_RTU_SLAVE, (* 2: Device is ModBus RTU Slave *)

 MBDT_TCP_MASTER, (* 3: Device is ModBus TCP Master *)

 MBDT_RTU_MASTER (* 4: Device is ModBus TCP Master *)

) := MBDT_NOT_SET;

 END_TYPE

 GLOBAL_TYPE_END

The device type defined by the enumerator MODBUS_DEV_TYPE refers to the own device. It is used
for creating the appropriate instance handle with MODBUS_OPEN_INSTANCE. Table 4 explains the
enumerator values of MODBUS_DEV_TYPE.

Table 4: Description of MODBUS_DEV_TYPE

Type Description

MBDT_TCP_MASTER,
MBDT_RTU_MASTER

The own PLC wants to act as master using the master function blocks
listed in Table 1

MBDT_TCP_SLAVE,
MBDT_RTU_SLAVE

The own PLC wants to run as slave linking a list of PLC variables to
Modbus registers via function block MODBUS_REGISTER_VAR_LIST
(see section 5.4)

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 13

4.3 Enum MODBUS_OBJ_TYPE

The enumerator MODBUS_OBJ_TYPE is globally defined in OpenPCS. It specifies to which register
category a User/PLC variable should be linked in Modbus Slave Mode. This type is used for
registering PLC variables with function block MODBUS_REGISTER_VAR_LIST (see section 5.4).

 GLOBAL_TYPE_BEGIN

 TYPE

 MODBUS_OBJ_TYPE :

 (MBOT_NOT_SET, (* 0: Variable uninitialized / not set *)

 MBOT_DISCRETE_INPUT, (* 1: Bit Variables of an I/O System *)

 MBOT_COILS, (* 2: Bit Variables of an Application *)

 MBOT_INPUT_REGISTERS, (* 3: 16bit Word Variables of an I/O System *)

 MBOT_HOLDING_REGISTERS (* 4: 16bit Word Variables of an Application *)

) := MBOT_NOT_SET;

 END_TYPE

 GLOBAL_TYPE_END

4.4 Structure MODBUS_DATA_POINT_Xxx

The both alternative structures MODBUS_DATA_POINT and MODBUS_DATA_POINT_VAR_REF are
globally defined in OpenPCS. They specify mapping information to link a User/PLC variable to a
Modbus register in Slave Mode. These structures are used for registering PLC variables with function
block MODBUS_REGISTER_VAR_LIST (see section 5.4).

The more effective structure MODBUS_DATA_POINT uses a POINTER for a direct addressing of the
variable associated with this Modbus data point (member 'm_pDataVar', see section 4.4.1). Using this
feature effectuates an easy and clear program structure. However, POINTER in structures is a new
feature of OpenPCS which is only available since OpenPCS version 6.8.0.

For backward compatibility to OpenPCS versions before 6.8.0 (up to and including OpenPCS version
6.7.4) the alternative structure MODBUS_DATA_POINT_VAR_REF is supported. This structure
doesn't contain a member of type POINTER, but the 4 equivalent members 'm_udiDataVarMemAdd',
'm_usiDataVarBitAdd', 'm_usiDataVarCbeType' and 'm_uiDataVarSize' (see section 4.4.2). The
information content of these 4 members is exactly the same as for the one member 'm_pDataVar' in
structure MODBUS_DATA_POINT. The Firmware Function POINTER_TO_VARREF converts a given
pointer variable into these 4 separate parameters (see example in section 4.4.2).

The structure MODBUS_DATA_POINT_VAR_REF is maintained even in newer versions of
OpenPCS. Thus, PLC programs using structure MODBUS_DATA_POINT_VAR_REF can also used in
with newer version of OpenPCS without any changes.

4.4.1 Structure MODBUS_DATA_POINT

The structure MODBUS_DATA_POINT specifies mapping information to link a User/PLC variable to a
Modbus register in Slave Mode. This structure is used for registering PLC variables with function block
MODBUS_REGISTER_VAR_LIST (see section 5.4).

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 14

 GLOBAL_TYPE_BEGIN

 TYPE

 MODBUS_DATA_POINT : STRUCT

 m_ObjType : MODBUS_OBJ_TYPE; (* ModBus Object Type *)

 m_uiDataAddr : UINT; (* Register/Coil Number (0..65535) *)

 m_pDataVar : POINTER; (* Pointer to associated Variable *)

 END_STRUCT;

 END_TYPE

 GLOBAL_TYPE_END

Important: This structure is applicable only from OpenPCS version 6.8.0. For older OpenPCS

versions up to and including version 6.7.4 the alternative structure
MODBUS_DATA_POINT_VAR_REF has to be used (see section 4.4.2).

Example:

The following code snippet shows how to create a data point for a variable using the structure
MODBUS_DATA_POINT. The bold red marked part handles the pointer addressing.

VAR

 (* ModBus Data Variable *)

 xModbusDataVar : BOOL := TRUE;

 (* Slave Variables List *)

 aModBus_DataPoint_List : ARRAY[1..1] OF MODBUS_DATA_POINT;

END_VAR

 aModBus_DataPoint_List[1].m_ObjType := MBOT_DISCRETE_INPUT;

 aModBus_DataPoint_List[1].m_uiDataAddr := 1;

 aModBus_DataPoint_List[1].m_pDataVar := &xModbusDataVar;

4.4.2 Structure MODBUS_DATA_POINT_VAR_REF

The structure MODBUS_DATA_POINT_VAR_REF is used for backward compatibility to support
Modbus functionality even for OpenPCS versions before 6.8.0 (up to and including OpenPCS version
6.7.4). For OpenPCS 6.8.0 or newer the alternative and more comfortable MODBUS_DATA_POINT is
recommended (see section 4.4.1).

The structure MODBUS_DATA_POINT_VAR_REF specifies mapping information to link a User/PLC
variable to a Modbus register in Slave Mode. This structure is used for registering PLC variables with
function block MODBUS_REGISTER_VAR_LIST (see section 5.4). The runtime values for members
'm_udiDataVarMemAdd', 'm_usiDataVarBitAdd', 'm_usiDataVarCbeType' and 'm_uiDataVarSize' has
to be requested by using the firmware function POINTER_TO_VARREF. This converts a given pointer
variable into these 4 parameters (see example below).

 GLOBAL_TYPE_BEGIN

 TYPE

 MODBUS_DATA_POINT_VAR_REF : STRUCT

 m_ObjType : MODBUS_OBJ_TYPE; (* ModBus Object Type *)

 m_uiDataAddr : UINT; (* Register/Coil Number (0..65535) *)

 m_udiDataVarMemAdd : UDINT; (* -+ *)

 m_usiDataVarBitAdd : USINT; (* | Reference to associated Var. *)

 m_usiDataVarCbeType : USINT; (* | as 'embedded' struct 'VAR_REF' *)

 m_uiDataVarSize : UINT; (* -+ *)

 END_STRUCT;

 END_TYPE

 GLOBAL_TYPE_END

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 15

Note: For OpenPCS systems newer then version 6.7.4 the more comfortable and easier-to-
use structure MODBUS_DATA_POINT is recommended (see section 4.4.1).

Example:

The following code snippet shows how to create a data point for a variable using the structure
MODBUS_DATA_POINT_VAR_REF. The bold red marked part handles the pointer reference
addressing.

VAR

 (* ModBus Data Variable *)

 xModbusDataVar : BOOL := TRUE;

 VarRef : VAR_REF;

 pVarPtr : POINTER;

 (* Slave Variables List *)

 aModBus_DataPoint_List : ARRAY[1..1] OF MODBUS_DATA_POINT_VAR_REF;

END_VAR

 (* Get 'VarRef' for ModBus Data Variable *)

 pVarPtr := &xModbusDataVar;

 VarRef := POINTER_TO_VARREF (pVarPtr);

 aModBus_DataPoint_List[1].m_ObjType := MBOT_DISCRETE_INPUT;

 aModBus_DataPoint_List[1].m_uiDataAddr := 1;

 aModBus_DataPoint_List[1].m_udiDataVarMemAdd := VarRef.m_udiMemAddress;

 aModBus_DataPoint_List[1].m_usiDataVarBitAdd := VarRef.m_usiBitAddress;

 aModBus_DataPoint_List[1].m_usiDataVarCbeType := VarRef.m_usiCbeType;

 aModBus_DataPoint_List[1].m_uiDataVarSize := VarRef.m_uiDataSize;

4.5 Representation of PLC Variables on Modbus

The memory layout of the variables in the PLC program (little-endian, big-endian) depends on the
CPU type of the PLC device. However, on Modbus all 16 bit register word are transmitted with high-
byte first (big-endian). Therefore the PLC firmware converts the data representation from the host
memory layout into the Modbus standard big-endian format.

Table 5 in Appendix A describes in detail how PLC variables are mapped to Modbus registers.

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 16

5 Function Blocks

5.1 Synchronization between the Modbus Function Blocks and PLC Program

Internally most of the Modbus library function blocks are executed asynchronous to the PLC program.
The synchronization between the function blocks and the PLC program is performed by the ENABLE
input and CONFIRM output. The interaction of both signals is shown in Figure 1.

ENABLE

CONFIRM

1 2 3 4 5 6

(a)

(b)

(c)

(d)

FB Call

Figure 1: Process synchronization between Function Block and PLC Program

The complete execution cycle of a function block asynchronously to the PLC program is performed by
following steps:

1. After the PLC program has provided all data to the inputs, it set ENABLE to TRUE and calls the

function block (call 1). The function block recognizes a rising edge at ENABLE and samples all
input data (step (a)). The requested operation is started internally and the function block returns to
the PLC program. The started operation itself runs asynchronously in the background.

2. The PLC program calls the function block in the following PLC cycles and holds ENABLE on

TRUE. The function block internally runs the requested operation in background (calls 2 and 3).

3. If the requested operation has been finished (either successfully or with an error), the outputs

CONFIRM, ERROR and ERRORINFO are set accordingly. On a successfully completion the
output CONFIRM is set to TRUE. In this case, the data outputs of the function block contain valid
data. In case of any error, the outputs ERROR and ERRORINFO signals the error reason (step (b),
call 4).

4. The PLC program reads the output data and after that it confirms the function block by setting input

ENABLE to FALSE. On the next call the function block reset it's internally state and clears all
outputs (step (c), call 5). By setting output CONFIRM to FALSE the function block signals it's
readiness for the next operation request (step (d)).

The output CONFIRM is only set to TRUE, if the requested operation has been completed
successfully. In case of any error, the outputs ERROR or ERRORINFO are setting accordingly.
Therefore it's necessary that a PLC program always checks CONFIRM as well as ERROR.

If the PLC program calls the function block with ENABLE := FALSE during an asynchronously
operation is running in the background, the active operation will canceled and the function resets it's
internally state to inactive and clears all outputs.

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 17

5.2 Function Block MODBUS_OPEN_INSTANCE

The function block MODBUS_OPEN_INSTANCE opens a new communication instance.

Prototype of the Function Block

 +-----------------------------+

 | MODBUS_OPEN_INSTANCE |

 | |

 MODBUS_DEV_TYPE ---|DEV_TYPE MODBUS_HANDLE|--- HMODBUS

 STRING(250) ---|COMM_PARAMS |

 BOOL ---|AUTO_RECONNECT |

 | |

 BOOL ---|ENABLE CONFIRM|--- BOOL

 | ERROR|--- USINT

 | ERRORINFO|--- DINT

 | |

 +-----------------------------+

Meaning of Operands

DEV_TYPE Specifies which role the own device gets for the connection to be created.

This parameter specifies the kind of destination node. Possible values are
defined as enumerator MODBUS_DEV_TYPE (see section 4.2).

COMM_PARAMS String with open parameters for the communication interface. The parameter

string depends on the used interface. For details see text below.

AUTO_RECONNECT TRUE: instructs the Modbus stack to auto-reconnect to the slave node in

case of a communication interruption
FALSE: an interrupted communication is not automatically reconnected by
the Modbus stack

ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information (max. number of possible connections, see text

below)

Description

This function block opens a new communication instance. The parameter DEV_TYPE specifies the
type of the destination node. The possible values are defined as enumerator MODBUS_DEV_TYPE
(see section 4.2). For example, DEV_TYPE := MBDT_TCP_SLAVE is used to open a communication
instance to a Modbus TCP Slave device.

The parameter COMM_PARAMS specifies the communication parameter necessary to open the
connection to the destination node. The structure depends on the communication interface type
(Ethernet for Modbus/TCP or serial interface for Modbus/RTU):

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 18

 Communication Parameter string for Master to open a connection to a Modbus/TCP Slave:

Scenario: own PLC operates as Master

remote devices operates as Slave

Format: ETH<IfNum>#<IpAddr>:<PortNum>

IfNum: Interface number to communicate with destination slave (e.g. "0" for ETH0)
IpAddr: IP address of destination slave (e.g. "192.168.1.27")
PortNum: Port number on destination slave (e.g. "502" for default Modbus port)

Example: ETH0#192.168.1.27:502

In this example the local interface 'ETH0' is used to establish a connection from
Master to the Slave device with IP address '192.168.1.27', port number 502.

Simplifications:

COMM_PARAMS:= 'ETH0#192.168.1.27'; The specified Ethernet device with the specified IP

address and Modbus default port (502) is used.

 Communication Parameter string for Master to open a connection to a Modbus/RTU Slave:

Scenario: own PLC operates as Master

remote devices operates as Slave

Format: SIO<IfNum>#<BaudRate>,<Parity>,<FrameTimeout>,<RespTimeout>

IfNum: Interface number to communicate with destination slave (e.g. "2" for SIO2)
BaudRate: Baudrate (e.g. "19200" or "115200")
Parity: 'N' = none parity (2 stop bits are used, see note below)

'O' = odd parity (1 stop bit is used, see note below)
'E' = even parity (1 stop bit is used, see note below)

FrameTimeout: Optional frame timeout in number of characters. This value specifies a number
of characters for the silent interval between two frames. Depending on baudrate
this number of characters is converted in the internal wait time.
If no explicit frame timeout is set in the communication parameter string then a
standard timeout of 10 ms is used.

RespTimeout: Optional response timeout in ms. This value specifies the maximum time period
within the master expects a response from the slave. If no response was
received from the slave within this period, than a communication timeout is
signaled (output ERRORINFO is set to "Timeout error occurred", see Table 3 in
section 3).
If no explicit timeout is set in the communication parameter string then a
standard timeout of 500 ms is used

Example: SIO2#115200,E,20,1000

In this example the local interface 'SIO2' on Master is used. The serial port is
configured to 115200 baud with even parity. The frame timeout is set to 20 ms
and the response timeout is configured with 1000 ms.

Note: In a Modbus frame each character is encoded with 11 bits. The character starts

with 1 start bit, followed by 8 data bits. If parity is used, then 1 parity bit and 1
stop bit are appended. If no parity is used, then 2 stop bits are appended.

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 19

 Communication Parameter string for Slave to run own device as Modbus/TCP Slave:

The Communication Parameter string for Modbus/TCP Slave mode doesn't include an IP address
section. In Modbus/TCP Slave mode the PLC always uses the configured system IP address of the
selected Ethernet interface. The procedure for configuring the system IP address depends on the
target. The respective System Manual describes the necessary details on this (e.g. configuring the
IP address in Bootloader on Linux devices or setting the IP address in the Configuration Command
Shell).

Scenario: own PLC operates as Slave

remote devices operates as Master

Format: ETH<IfNum>#:<PortNum>

IfNum: Interface number (e.g. "0" for ETH0); the configured system IP address of this

interface is used for Modbus Slave
PortNum: Port number (e.g. "502" for default Modbus port)

Example: ETH0#:502

In this example the local interface 'ETH0' on Slave is used. The Slave is
assigned to port number 502.

Simplifications:

COMM_PARAMS:= ''; On an empty parameter string the default Ethernet device

(typically 'ETH0') with Modbus default port (502) is used.

COMM_PARAMS:= 'ETH0'; The specified Ethernet device with its configured system

IP address and Modbus default port (502) is used.

 Communication Parameter string for Slave to run own device as Modbus/RTU Slave:

Scenario: own PLC operates as Slave

remote devices operates as Master

Format: SIO<IfNum>#<BaudRate>,<Parity>,<FrameTimeout>@<NodeAddr>

IfNum: Interface number (e.g. "2" for SIO2)
BaudRate: Baudrate (e.g. "19200" or "115200")
Parity: 'N' = none parity (2 stop bits are used, see note below)

'O' = odd parity (1 stop bit is used, see note below)
'E' = even parity (1 stop bit is used, see note below)

FrameTimeout: Optional frame timeout in number of characters. This value specifies a number
of characters for the silent interval between two frames. Depending on baudrate
this number of characters is converted in the internal wait time.
If no explicit frame timeout is set in the communication parameter string then a
standard timeout of 10 ms is used.

NodeAddr: Own Modbus/RTU Slave address (e.g. "12" for running own device as Node 12)

Example: SIO2#115200,E,20@12

In this example the local interface 'SIO2' on Slave is used. The serial port is
configured to 115200 baud with even parity. The frame timeout is set to 20 ms.
The Slave is assigned to node address 12.

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 20

Note: In a Modbus frame each character is encoded with 11 bits. The character starts
with 1 start bit, followed by 8 data bits. If parity is used, then 1 parity bit and 1
stop bit are appended. If no parity is used, then 2 stop bits are appended.

The parameter AUTO_RECONNECT instructs the Modbus stack either to automatically reconnet an
interrupted communication to a Modbus Slave device or not.

If the function block was able to open the connection successfully, an appropriate handle is returned
on output MODBUS_HANDLE. This handle is requested for further calls of all other function blocks.

If the function block set its output CONFIRM to TRUE, the requested operation has been finished
successfully. Otherwise the output ERROR signals an appropriate error code according to Table 2.
Additionally, output ERROR_INFO is set to the maximum number of possible connections.

5.3 Function Block MODBUS_CLOSE_INSTANCE

The function block MODBUS_CLOSE_INSTANCE closes an existing communication instance.

Prototype of the Function Block

 +-----------------------------+

 | MODBUS_CLOSE_INSTANCE |

 | |

 HMODBUS ---|MODBUS_HANDLE |

 | |

 BOOL ---|ENABLE CONFIRM|--- BOOL

 | ERROR|--- USINT

 | ERRORINFO|--- DINT

 | |

 +-----------------------------+

Meaning of Operands

MODBUS_HANDLE Handle of the communication instance to close

ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information

Description

This function block closes a communication instance, opened prior by function block
MODBUS_OPEN_INSTANCE (see section 5.2).

If the function block set its output CONFIRM to TRUE, the requested operation has been finished
successfully. Otherwise the output ERROR signals an appropriate error code according to Table 2.

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 21

5.4 Function Block MODBUS_REGISTER_VAR_LIST

The function block MODBUS_REGISTER_VAR_LIST registers a set of PLC variables which should be
accessible from a remote master.

Prototype of the Function Block

 +-----------------------------+

 | MODBUS_REGISTER_VAR_LIST |

 | |

 HMODBUS ---|MODBUS_HANDLE |

 POINTER ---|DATA_POINT_LIST |

 | |

 | |

 BOOL ---|ENABLE CONFIRM|--- BOOL

 | ERROR|--- USINT

 | ERRORINFO|--- DINT

 | |

 +-----------------------------+

Meaning of Operands

MODBUS_HANDLE Handle of the communication instance to use; this handle is to request by

calling MODBUS_OPEN_INSTANCE (see section 5.2).

DATA_POINT_LIST Pointer to slave the slave variables list, defines as

ARRAY[x..y] OF MODBUS_DATA_POINT (see section 4.4)

ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information (number of the array element which has

caused this error, see text below)

Description

This function block registers a set of PLC variables which should be accessible from a remote master.
Each single variable is defined by its individual instance of the MODBUS_DATA_POINT structure (see
section 4.4). All data point instances are joined together in an array:

 aModBus_DataPoint_List : ARRAY[x..y] OF MODBUS_DATA_POINT;

By adjusting the array size (lower/upper boundary x, y) the user can link as many variables as needed
to the Modbus stack. The whole array is registered to the Modbus stack by calling the function block
MODBUS_REGISTER_VAR_LIST. The function block internally checks the data point array for
validity. If there is any incorrectness, then the function block stops checking on the first faulty element.
The output ERROR describes the error reason (see Table 2 in section 3) and the output ERRORINFO
is set to the number of the array element which has caused this error.

The parameter MODBUS_HANDLE identifies the communication instance to use. The handle is
created by function block MODBUS_OPEN_INSTANCE (see section 5.2). To create a handle suitable
for a Modbus slave instance, the function block MODBUS_OPEN_INSTANCE has to be called by
setting input DEV_TYPE either to MBDT_TCP_SLAVE or to MBDT_RTU_SLAVE (see section 4.2).

Section 2.3 describes basics about using the PLC as Modbus Slave.

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 22

Example:

The following code snippet shows how to create and register a slave variables list:

VAR

 (* ModBus Data Variables *)

 xModbusDataVar_DigiIn : BOOL;

 uiModbusDataVar_AnalogIn : UINT;

 wModbusDataVar_ModeConfig : WORD;

 (* Slave Variables List *)

 aModBus_DataPoint_List : ARRAY[1..3] OF MODBUS_DATA_POINT;

 paModBus_DataPoint_List : POINTER;

 FB_ModBusRegisterVarList : MODBUS_REGISTER_VAR_LIST;

END_VAR

 (* Link 'xModbusDataVar_DigiIn' as Reg1 @ DISCRETE_INPUT *)

 aModBus_DataPoint_List[1].m_ObjType := MBOT_DISCRETE_INPUT;

 aModBus_DataPoint_List[1].m_uiDataAddr := 1;

 aModBus_DataPoint_List[1]. m_pDataVar := &xModbusDataVar_DigiIn;

 (* Link 'uiModbusDataVar_AnalogIn' as Reg10 @ INPUT_REGISTERS *)

 aModBus_DataPoint_List[2].m_ObjType := MBOT_INPUT_REGISTERS;

 aModBus_DataPoint_List[2].m_uiDataAddr := 10;

 aModBus_DataPoint_List[2]. m_pDataVar := &uiModbusDataVar_AnalogIn;

 (* Link 'wModbusDataVar_ModeConfig' as Reg20 @ HOLDING_REGISTERS *)

 aModBus_DataPoint_List[3].m_ObjType := MBOT_HOLDING_REGISTERS;

 aModBus_DataPoint_List[3].m_uiDataAddr := 20;

 aModBus_DataPoint_List[3]. m_pDataVar := &wModbusDataVar_ModeConfig;

 (* Register ModBus DataPoint List *)

 paModBus_DataPoint_List := &aModBus_DataPoint_List;

 FB_ModBusRegisterVarList (

 MODBUS_HANDLE := hModbusInst,

 DATA_POINT_LIST := paModBus_DataPoint_List,

 ENABLE := TRUE;

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 23

5.5 Function Block MODBUS_READ_REGS

The function block MODBUS_READ_REGS reads multiple holding registers from a Modbus slave
device (e.g. configuration registers).

Modbus Function Code: 03H

Prototype of the Function Block

 +-----------------------------+

 | MODBUS_READ_REGS |

 | |

 HMODBUS ---|MODBUS_HANDLE |

 USINT ---|SLAVE_ADDR |

 UINT ---|REG_START_ADDR |

 UINT ---|REG_COUNT |

 POINTER ---|DATA_BUFFER |

 | |

 BOOL ---|ENABLE CONFIRM|--- BOOL

 | ERROR|--- USINT

 | ERRORINFO|--- DINT

 | |

 +-----------------------------+

Meaning of Operands

MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)

REG_START_ADDR Address of the first 16-bit holding register to read

REG_COUNT Number of 16-bit holding registers to read

DATA_BUFFER Address of an object (single variable or array) for receiving the register

data to read (see section 4.5)

ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information; possible codes are defined in Table 3

Description

This function block reads multiple holding registers from a Modbus slave device (e.g. configuration
registers). The required handle for parameter MODBUS_HANDLE has to be created by using the
function block MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter
SLAVE_ADDR is described in section 2.2. The pointer DATA_BUFFER addresses a data object which
acts as receive buffer for the requested data (see section 4.5 for details about representation of PLC
variables on Modbus).

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the reading
request is still running. The function block signals a successfully completion of the read operation by
setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps FALSE and the
output ERROR is set to an appropriate error code according Table 2.

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 24

5.6 Function Block MODBUS_WRITE_SINGLE_REG

The function block MODBUS_WRITE_SINGLE_REG writes a single holding register to a Modbus
slave device (e.g. configuration register).

Modbus Function Code: 06H

Prototype of the Function Block

 +-----------------------------+

 | MODBUS_WRITE_SINGLE_REG |

 | |

 HMODBUS ---|MODBUS_HANDLE |

 USINT ---|SLAVE_ADDR |

 UINT ---|REG_ADDR |

 WORD ---|DATA |

 | |

 BOOL ---|ENABLE CONFIRM|--- BOOL

 | ERROR|--- USINT

 | ERRORINFO|--- DINT

 | |

 +-----------------------------+

Meaning of Operands

MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)

REG_ADDR Address of the 16-bit holding register to write

DATA Register data to send

ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information; possible codes are defined in Table 3

Description

This function block writes a single holding register to a Modbus slave device (e.g. configuration
register). The required handle for parameter MODBUS_HANDLE has to be created by using the
function block MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter
SLAVE_ADDR is described in section 2.2. The input DATA contains the register data to send.

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the
transmission request is still running. The function block signals a successfully completion of the write
operation by setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps
FALSE and the output ERROR is set to an appropriate error code according Table 2.

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 25

5.7 Function Block MODBUS_WRITE_MULTI_REGS

The function block MODBUS_WRITE_MULTI_REGS writes multiple holding registers to a Modbus
slave device (e.g. configuration registers).

Modbus Function Code: 10H

Prototype of the Function Block

 +-----------------------------+

 | MODBUS_WRITE_MULTI_REGS |

 | |

 HMODBUS ---|MODBUS_HANDLE |

 USINT ---|SLAVE_ADDR |

 UINT ---|REG_START_ADDR |

 UINT ---|REG_COUNT |

 POINTER ---|DATA_BUFFER |

 | |

 BOOL ---|ENABLE CONFIRM|--- BOOL

 | ERROR|--- USINT

 | ERRORINFO|--- DINT

 | |

 +-----------------------------+

Meaning of Operands

MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)

REG_START_ADDR Address of the first 16-bit holding register to write

REG_COUNT Number of 16-bit holding registers to write

DATA_BUFFER Address of an object (single variable or array) which contains the register

data to send (see section 4.5)

ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information; possible codes are defined in Table 3

Description

This function block writes multiple holding registers to a Modbus slave device (e.g. configuration
registers). The required handle for parameter MODBUS_HANDLE has to be created by using the
function block MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter
SLAVE_ADDR is described in section 2.2. The pointer DATA_BUFFER addresses a data object which
contains the register data to send (see section 4.5 for details about representation of PLC variables on
Modbus).

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the
transmission request is still running. The function block signals a successfully completion of the write
operation by setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps
FALSE and the output ERROR is set to an appropriate error code according Table 2.

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 26

5.8 Function Block MODBUS_READ_WRITE_REGS

The function block MODBUS_READ_WRITE_REGS reads and writes multiple holding registers to a
Modbus slave device in a single Modbus transaction (e.g. configuration registers).

Modbus Function Code: 17H

Prototype of the Function Block

 +-----------------------------+

 | MODBUS_READ_WRITE_REGS |

 | |

 HMODBUS ---|MODBUS_HANDLE |

 USINT ---|SLAVE_ADDR |

 UINT ---|WR_REG_START_ADDR |

 UINT ---|WR_REG_COUNT |

 POINTER ---|WR_DATA_BUFFER |

 UINT ---|RD_REG_START_ADDR |

 UINT ---|RD_REG_COUNT |

 POINTER ---|RD_DATA_BUFFER |

 | |

 BOOL ---|ENABLE CONFIRM|--- BOOL

 | ERROR|--- USINT

 | ERRORINFO|--- DINT

 | |

 +-----------------------------+

Meaning of Operands

MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)

WR_REG_START_ADDR Address of the first 16-bit holding register to write

WR_REG_COUNT Number of 16-bit holding registers to write

WR_DATA_BUFFER Address of an object (single variable or array) which contains the register

data to send (see section 4.5)

RD_REG_START_ADDR Address of the first 16-bit holding register to read

RD_REG_COUNT Number of 16-bit holding registers to read

RD_DATA_BUFFER Address of an object (single variable or array) for receiving the register

data to read (see section 4.5)

ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information; possible codes are defined in Table 3

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 27

Description

This function block reads and writes multiple holding registers to a Modbus slave device in a single
Modbus transaction (e.g. configuration registers). The write operation is performed before the read
operation. The required handle for parameter MODBUS_HANDLE has to be created by using the
function block MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter
SLAVE_ADDR is described in section 2.2. The pointer WR_DATA_BUFFER addresses a data object
which contains the register data to send. The pointer RD_DATA_BUFFER addresses a data object
which acts as receive buffer for the requested data (see section 4.5 for details about representation of
PLC variables on Modbus).

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the Modbus
data transfer is still running. The function block signals a successfully completion of the operation by
setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps FALSE and the
output ERROR is set to an appropriate error code according Table 2.

5.9 Function Block MODBUS_READ_INPUT_REGS

The function block MODBUS_READ_INPUT_REGS reads multiple input registers from a Modbus
slave device (e.g. analog inputs).

Modbus Function Code: 04H

Prototype of the Function Block

 +-----------------------------+

 | MODBUS_READ_INPUT_REGS |

 | |

 HMODBUS ---|MODBUS_HANDLE |

 USINT ---|SLAVE_ADDR |

 UINT ---|REG_START_ADDR |

 UINT ---|REG_COUNT |

 POINTER ---|DATA_BUFFER |

 | |

 BOOL ---|ENABLE CONFIRM|--- BOOL

 | ERROR|--- USINT

 | ERRORINFO|--- DINT

 | |

 +-----------------------------+

Meaning of Operands

MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)

REG_START_ADDR Address of the first 16-bit input register to read

REG_COUNT Number of 16-bit input registers to read

DATA_BUFFER Address of an object (single variable or array) for receiving the register

data to read (see section 4.5)

ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information; possible codes are defined in Table 3

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 28

Description

This function block reads multiple input registers from a Modbus slave device (e.g. analog inputs). The
required handle for parameter MODBUS_HANDLE has to be created by using the function block
MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter SLAVE_ADDR is
described in section 2.2. The pointer DATA_BUFFER addresses a data object which acts as receive
buffer for the requested data (see section 4.5 for details about representation of PLC variables on
Modbus).

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the reading
request is still running. The function block signals a successfully completion of the read operation by
setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps FALSE and the
output ERROR is set to an appropriate error code according Table 2.

5.10 Function Block MODBUS_READ_DISCR_INPUTS

The function block MODBUS_READ_DISCR_INPUTS reads multiple discrete input registers from a
Modbus slave device (e.g. digital inputs).

Modbus Function Code: 02H

Prototype of the Function Block

 +-----------------------------+

 | MODBUS_READ_DISCR_INPUTS |

 | |

 HMODBUS ---|MODBUS_HANDLE |

 USINT ---|SLAVE_ADDR |

 UINT ---|REG_START_ADDR |

 UINT ---|REG_COUNT |

 POINTER ---|DATA_BUFFER |

 | |

 BOOL ---|ENABLE CONFIRM|--- BOOL

 | ERROR|--- USINT

 | ERRORINFO|--- DINT

 | |

 +-----------------------------+

Meaning of Operands

MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)

REG_START_ADDR Address of the first 1-bit discrete input register to read

REG_COUNT Number of 1-bit discrete input registers to read

DATA_BUFFER Address of an object (single variable or array) for receiving the register

data to read (see section 4.5)

ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information; possible codes are defined in Table 3

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 29

Description

This function block reads discrete input registers from a Modbus slave device (e.g. digital inputs). The
required handle for parameter MODBUS_HANDLE has to be created by using the function block
MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter SLAVE_ADDR is
described in section 2.2. The pointer DATA_BUFFER addresses a data object which acts as receive
buffer for the requested data (see section 4.5 for details about representation of PLC variables on
Modbus).

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the reading
request is still running. The function block signals a successfully completion of the read operation by
setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps FALSE and the
output ERROR is set to an appropriate error code according Table 2.

5.11 Function Block MODBUS_READ_COILS

The function block MODBUS_READ_COILS reads multiple coils from a Modbus slave device (e.g.
read back digital outputs).

Modbus Function Code: 01H

Prototype of the Function Block

 +-----------------------------+

 | MODBUS_READ_COILS |

 | |

 HMODBUS ---|MODBUS_HANDLE |

 USINT ---|SLAVE_ADDR |

 UINT ---|REG_START_ADDR |

 UINT ---|REG_COUNT |

 POINTER ---|DATA_BUFFER |

 | |

 BOOL ---|ENABLE CONFIRM|--- BOOL

 | ERROR|--- USINT

 | ERRORINFO|--- DINT

 | |

 +-----------------------------+

Meaning of Operands

MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)

REG_START_ADDR Address of the first 1-bit coil to read

REG_COUNT Number of 1-bit coil registers to read

DATA_BUFFER Address of an object (single variable or array) for receiving the register

data to read (see section 4.5)

ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information; possible codes are defined in Table 3

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 30

Description

This function reads multiple coils from a Modbus slave device (e.g. read back digital outputs). The
required handle for parameter MODBUS_HANDLE has to be created by using the function block
MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter SLAVE_ADDR is
described in section 2.2. The pointer DATA_BUFFER addresses a data object which acts as receive
buffer for the requested data (see section 4.5 for details about representation of PLC variables on
Modbus).

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the reading
request is still running. The function block signals a successfully completion of the read operation by
setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps FALSE and the
output ERROR is set to an appropriate error code according Table 2.

5.12 Function Block MODBUS_WRITE_SINGLE_COIL

The function block MODBUS_WRITE_SINGLE_COIL writes a single coil to a Modbus slave device
(e.g. digital output).

Modbus Function Code: 05H

Prototype of the Function Block

 +-----------------------------+

 | MODBUS_WRITE_SINGLE_COIL |

 | |

 HMODBUS ---|MODBUS_HANDLE |

 USINT ---|SLAVE_ADDR |

 UINT ---|REG_ADDR |

 BOOL ---|DATA |

 | |

 BOOL ---|ENABLE CONFIRM|--- BOOL

 | ERROR|--- USINT

 | ERRORINFO|--- DINT

 | |

 +-----------------------------+

Meaning of Operands

MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)

REG_ADDR Address of the 1-bit coil to write

DATA Register data to send

ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information; possible codes are defined in Table 3

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 31

Description

This function block writes a single coil to a Modbus slave device (e.g. digital output). The required
handle for parameter MODBUS_HANDLE has to be created by using the function block
MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter SLAVE_ADDR is
described in section 2.2. The input DATA contains the register data to send.

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the
transmission request is still running. The function block signals a successfully completion of the write
operation by setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps
FALSE and the output ERROR is set to an appropriate error code according Table 2.

5.13 Function Block MODBUS_WRITE_MULTI_COILS

The function block MODBUS_WRITE_MULTI_COILS writes multiple coils to a Modbus slave device
(e.g. digital outputs).

Modbus Function Code: 0FH

Prototype of the Function Block

 +-----------------------------+

 | MODBUS_WRITE_MULTI_COILS |

 | |

 HMODBUS ---|MODBUS_HANDLE |

 USINT ---|SLAVE_ADDR |

 UINT ---|REG_START_ADDR |

 UINT ---|REG_COUNT |

 POINTER ---|DATA_BUFFER |

 | |

 BOOL ---|ENABLE CONFIRM|--- BOOL

 | ERROR|--- USINT

 | ERRORINFO|--- DINT

 | |

 +-----------------------------+

Meaning of Operands

MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)

REG_START_ADDR Address of the first 1-bit coil to write

REG_COUNT Number of 1-bit coil registers to write

DATA_BUFFER Address of an object (single variable or array) which contains the register

data to send (see section 4.5)

ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information; possible codes are defined in Table 3

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 32

Description

This function block writes multiple coils to a Modbus slave device (e.g. digital outputs). The required
handle for parameter MODBUS_HANDLE has to be created by using the function block
MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter SLAVE_ADDR is
described in section 2.2. The pointer DATA_BUFFER addresses a data object which contains the
register data to send (see section 4.5 for details about representation of PLC variables on Modbus).

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the
transmission request is still running. The function block signals a successfully completion of the write
operation by setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps
FALSE and the output ERROR is set to an appropriate error code according Table 2.

5.14 Function Block MODBUS_RAW_PDU_REQUEST

The function block MODBUS_RAW_PDU_REQUEST exchanges raw PDU telegrams with a Modbus
slave device.

Prototype of the Function Block

 +-----------------------------+

 | MODBUS_RAW_PDU_REQUEST |

 | |

 HMODBUS ---|MODBUS_HANDLE |

 USINT ---|SLAVE_ADDR |

 USINT ---|FNCT_CODE |

 POINTER ---|PAYLOAD_IN |

 POINTER ---|PAYLOAD_OUT PAYLOAD_OUT_LEN|--- UINT

 | |

 BOOL ---|ENABLE CONFIRM|--- BOOL

 | ERROR|--- USINT

 | ERRORINFO|--- DINT

 | |

 +-----------------------------+

Meaning of Operands

MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)

FNCT_CODE Modbus Function Code for the requested operation

PAYLOAD_IN Address of a byte array which contains the payload data to send
PAYLOAD_OUT Address of a byte array for receiving the payload data to read

PAYLOAD_OUT_LEN Number of bytes valid in receive buffer addressed by PAYLOAD_OUT

ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information; possible codes are defined in Table 3

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 33

Description

This function block exchanges raw PDU telegrams with a Modbus slave device. That allows using any
functions that are not supported by this library. The required handle for parameter MODBUS_HANDLE
has to be created by using the function block MODBUS_OPEN_INSTANCE (see section 5.2). The
usage of the input parameter SLAVE_ADDR is described in section 2.2. The pointer PAYLOAD_IN
addresses a byte array which contains the payload data to send. Equivalently the pointer
PAYLOAD_OUT addresses a byte array which acts as receive buffer for the requested data.

For the both parameters PAYLOAD_IN and PAYLOAD_OUT only pointers to ARRAY of BYTE, USINT
and SINT are accepted. The PLC firmware doesn't convert any of this data. That means that the PLC
programmer itself is responsible for the correct data format.

The Transmit PDU is build from Function Code and payload data addressed by parameters
PAYLOAD_IN. The Function Code is used as first byte of PDU, followed by the payload data (see
Figure 2).

The first byte of the Receive PDU specifies the length of following payload data in bytes. This length
information is set on output PAYLOAD_OUT_LEN as well as kept as first byte of the receive data
block, stored in buffer addressed by parameter PAYLOAD_OUT (see Figure 2).

FC

11 22 33 44

FC 11 22 33 44

FNCT_CODE

PAYLOAD_IN

Len CC DD EE FF

PAYLOAD_OUT

PAYLOAD_OUT_LEN

Len CC DD EE FF

Len

Transmit PDU

Receive PDU

MODBUS_RAW_PDU_REQUEST

Figure 2: Structure of Transmit and Receive Raw PDU

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the
requested operation is still running. The function block signals a successfully completion of the
operation by setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps
FALSE and the output ERROR is set to an appropriate error code according Table 2.

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 34

6 Index

Data Format 15
Error Codes 10
Error Info Codes 10
Function blocks, overview

MODBUS_Xxx 7
HMODBUS 12
Modbus Basics

Master 8
Slave 9

MODBUS_CLOSE_INSTANCE 20
MODBUS_DATA_POINT 13
MODBUS_DATA_POINT_VAR_REF 14
MODBUS_DEV_TYPE 12
MODBUS_OBJ_TYPE 13

MODBUS_OPEN_INSTANCE 17
MODBUS_RAW_PDU_REQUEST 32
MODBUS_READ_COILS 29
MODBUS_READ_DISCR_INPUTS 28
MODBUS_READ_INPUT_REGS 27
MODBUS_READ_REGS 23
MODBUS_READ_WRITE_REGS 26
MODBUS_REGISTER_VAR_LIST 21
MODBUS_WRITE_MULTI_COILS 31
MODBUS_WRITE_MULTI_REGS 25
MODBUS_WRITE_SINGLE_COIL 30
MODBUS_WRITE_SINGLE_REGS 24
Synchronization FBs/PLC 16

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 35

Appendix A: Mapping PLC Variables to Modbus Registers

Table 5: Mapping PLC Variables to Modbus Registers

Modbus Type PLC Data Type Modbus Register Representation

1 bit register

BOOL Reg[n] := Var

BYTE

SINT

USINT

Reg[n] := Var.0

Reg[n+1] := Var.1

...

Reg[n+7] := Var.7

WORD

INT

UINT

Reg[n] := Var.0

Reg[n+1] := Var.1

...

Reg[n+15] := Var.15

DWORD

DINT

UDINT

Reg[n] := Var.0

Reg[n+1] := Var.1

...

Reg[n+31] := Var.31

BOOL[0..a]

Reg[n] := Var[0]

...

Reg[n+a] := Var[a]

BYTE[0..a]

SINT[0..a]

USINT[0..a]

Reg[n] := Var[0].0

Reg[n+1] := Var[0].1

...

Reg[n+(a*8)+7] := Var[a].7

WORD[0..a]

INT[0..a]

UINT[0..a]

Reg[n] := Var[0].0

Reg[n+1] := Var[0].1

...

Reg[n+(a*16)+15] := Var[a].15

DWORD[0..a]

DINT[0..a]

UDINT[0..a]

Reg[n] := Var[0].0

Reg[n+1] := Var[0].1

...

Reg[n+(a*32)+31] := Var[a].31

16 bit register

WORD

INT

UINT

Reg[n] := Var

DWORD

DINT

UDINT

Reg[n] := Var.LowWord

Reg[n+1] := Var.HighWord

WORD[0..a]

INT[0..a]

UINT[0..a]

Reg[n] := Var[0]

Reg[n+1] := Var[1]

...

Reg[n+a] := Var[a]

DWORD[0..a]

DINT[0..a]

UDINT[0..a]

Reg[n] := Var[0].LowWord

Reg[n+1] := Var[0].HighWord

...

Reg[n+(a*2)] := Var[a].LowWord

Reg[n+(a*2)+1] := Var[a].HighWord

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 36

Document: SYS TEC Specific Modbus Function Block Library for OpenPCS
Document number: L-1829-01, February 2016

Do you have any suggestions for improving this manual?

Have you discovered any errors in this manual? Page

Sent from:
Customer number:

Name:

Company:

Address:

Send to:

SYS TEC electronic GmbH
Am Windrad 2
D – 08468 Heinsdorfergrund
GERMANY
Fax: +49 (0) 37 65 / 38600-4100
Email: info@systec-electronic.com

mailto:info@systec-electronic.com

 SYS TEC specific Modbus Function Block Library for OpenPCS

 SYSTEC electronic GmbH 2016 L-1829-01 37

