SYS TEC

SYS TEC-specific
Modbus Function Block Library
for OpenPCS

User Manual
Version 1.0

Edition February 2016

Document no.: L-1829%e 01

SYS TEC electronic GmbH Am Windrad 2 D-08468 Heinsdorfergrund
Telefon: +49 (3765) 38600-0 Telefax: +49 (3765) 38600-4100
Web: http://www.systec-electronic.com Mail: info@systec-electronic.com

SYS TEC electronic GmbH - System House for Distributed Automation

SYS TEC specific Modbus Function Block Library for OpenPCS

Status/Changes

Status: Released

Date/Version Section Changes Author/Editor
2016/02/25 all Creation R. Sieber
1.0 ("TN_Modbus_FunctionBlockLibrary"

reworked to this User Manual)

© SYSTEC electronic GmbH 2016 L-1829-01

SYS TEC specific Modbus Function Block Library for OpenPCS

Product names used in this manual which are also registered trademarks have not been marked extra.
The missing © mark does not imply that the trade name is unregistered. Nor is it possible to determine
the existence of any patents or protection of inventions on the basis of the names used.

The information in this manual has been carefully checked and is believed to be accurate. However, it
is expressly stated that SYS TEC electronic GmbH does not assume warranty or legal responsibility or
any liability for consequential damages which result from the use or contents of this user manual. The
information contained in this manual can be changed without prior notice. Therefore, SYS TEC
electronic GmbH shall not accept any obligation.

Furthermore, it is expressly stated that SYS TEC electronic GmbH does not assume warranty or legal
responsibility or any liability for consequential damages which result from incorrect use of the hard or
software. The layout or design of the hardware can also be changed without prior notice. Therefore,
SYS TEC electronic GmbH shall not accept any obligation.

© Copyright 2016 SYS TEC electronic GmbH, D-08468 Heinsdorfergrund.

All rights reserved. No part of this manual may be reproduced, processed, copied or distributed in any
way without the express prior written permission of SYS TEC electronic GmbH.

Inform yourselves:

Contact Direct Your Local Distributor
Address: SYS TEC electronic GmbH

Am Windrad 2

D-08468 Heinsdorfergrund

GERMANY
Ordering +49 (0) 37 65 / 38 600-0 Please find a list of our

Information: info@systec-electronic.com distributors under:

http://www.systec-
electronic.com/distributors

Technical Support: | +49 (0) 37 65/ 38 600-0
support@systec-electronic.com

Fax: +49 (0) 37 65/ 38 600-4100

Web Site: http://www.systec-electronic.com

1st Edition February 2016

© SYSTEC electronic GmbH 2016 L-1829-01 3

mailto:info@systec-electronic.com
mailto:support@systec-electronic.com
http://www.systec-electronic.com/

SYS TEC specific Modbus Function Block Library for OpenPCS

Table of Contents

R [o] 4 0 Yo [V T3 {0] o IR 6
2 ModDUS OVEIVIEW ANU BASICS ..uuiiiiiiiiiieii ettt e e et e et e e e s e e s e et s e e saae e e s et e e esaanes 7
2.1 MOADUS FUNCLION OVEIVIEW ...veieiieeeeie ettt ettt s e e e e e s e ea b s e e s s e s sa st s e e e s s s eesbabann s 7
2.2 Y o Te | o TU ISR Y = 1y (T g = 1=] (o 8
2.3 1Y/ 60 | o 10 SRS [VST == 1] (o T 9

3 Error Codes of MOdbus FUNCEION BIOCKS ..uuuueiiiiiiiiiiee e 10
4 Type Definitions for Modbus FUNCtioN BIOCKSuvvviieiiiiiiiiiicc e 12
4.1 Data TYPe HMODBUS ...ttt ettt et e e e st e e e stae e e e stae e e e staeeeesnsbeaaeans 12
4.2 ENUM MODBUS _DEV_TYPEiitiiitiiiiiiiiiitiiieieieiaieieueiererereiererereierereressreierseererererereeeene 12
4.3 ENum MODBUS _OBJ TYPEcooiiitiiieie ettt e e et e e e e e e s e anta e e e e e e e e s ennnnnees 13
4.4 Structure MODBUS_DATA POINT XXX t1utttteeeiiiiiiiieeeeeesiaiinineeeesesssassssnnessesesssnssssseseesssssnns 13
4.4.1 Structure MODBUS _DATA POINT ..coiiiii ettt e e e s sraran e e e e e e 13
4.4.2 Structure MODBUS_DATA POINT VAR _REF ...t 14

4.5 Representation of PLC Variables 0n MOADUS............uuuiiiiiiiiiiiiiiieieieieieinieieeseererernennn. 15

LT =LV 1o (L0] I = [Yod 2T 16
5.1 Synchronization between the Modbus Function Blocks and PLC Programcccceeeveeee.. 16
5.2 Function Block MODBUS _OPEN_INSTANCEcooiiiiiiiiiieie e 17
5.3 Function Block MODBUS CLOSE_INSTANCEccoiiiiiiiie e 20
54 Function Block MODBUS REGISTER VAR _LIST ..ot 21
55 Function Block MODBUS_READ_REGSccooiiiiiiiiiii ettt 23
5.6 Function Block MODBUS_WRITE_SINGLE_REG.......ccceoeoiiiieeeeeeeeeeeeeeeeeeee e 24
5.7 Function Block MODBUS WRITE_MULTI_REGS........cccoiiiiiiee e 25
5.8 Function Block MODBUS READ WRITE_REGS.........ccooiiiiiieee e 26
5.9 Function Block MODBUS READ _INPUT_REGScociiiiiiiieeeeceeee e 27
5.10 Function Block MODBUS READ _DISCR_INPUTSccciiiiiiie e 28
5.11 Function Block MODBUS READ _COILS ..ottt 29
5.12 Function Block MODBUS WRITE_SINGLE _COILccccoiiiiiiiiiiiiiieeeee e 30
5.13 Function Block MODBUS WRITE_MULTI_COILScciiiiiiiiiiiiiee e ee e 31
5.14 Function Block MODBUS RAW_PDU_REQUESTcciiiiiiiiiiiiiiee e eeiiiieer e e e snineeeeee e e 32

(ST 1 Lo 1= G 34
Appendix A: Mapping PLC Variables to Modbus RegiStersccoooeiviiiiiiii i, 35

© SYSTEC electronic GmbH 2016 L-1829-01 4

SYS TEC specific Modbus Function Block Library for OpenPCS

List of Tables

Table 1: Overview of Function Blocks for MOADUSuueiiiiiiii e 7
Table 2: Error Codes of Modbus Function Blocks used for output ERRORcccooiiiiiiiiiieeiiiiieeeee 10
Table 3: Error Info Codes of Modbus Function Blocks used for output ERROR_INFO............cccveeene 10
Table 4: Description of MODBUS _DEV_TYPE ...ttt 12
Table 5: Mapping PLC Variables to Modbus REQISLEIScccooiiiiiiiiiiie e 35

List of Figures

Figure 1: Process synchronization between Function Block and PLC Programcccocccveeiiieeeenen 16
Figure 2: Structure of Transmit and Receive RAW PDU...........cccco i 33

© SYSTEC electronic GmbH 2016 L-1829-01 5

SYS TEC specific Modbus Function Block Library for OpenPCS

1 Introduction

This manual describes the application of the Modbus Function Block Library for OpenPCS. It
describes the date types, functions and function blocks provided by the library. This library allows a
PLC program for data exchange with other devices via Modbus protocol. The implementation supports
Modbus/RTU as well as Modbus/TCP.

© SYSTEC electronic GmbH 2016 L-1829-01 6

SYS TEC specific Modbus Function Block Library for OpenPCS

2 Modbus Overview and Basics

2.1 Modbus Function Overview

The Modbus extension is fully integrated in the PLC runtime system. It supports the following
functions:

Modbus RTU Master
Modbus RTU Slave
Modbus TCP Master
Modbus TCP Slave

Table 1 shows an overview of the IEC61131-3 function blocks for Modbus. All components are
realized as manufacturer-specific function blocks and therefore as a part of the PLC firmware.

Table 1: Overview of Function Blocks for Modbus

Function Block Master [Fnct. | Data [Meaning Sect.
Slave |Code |Width
MODBUS_OPEN_INSTANCE M/S Open a new 5.2

communication instance;
the returned Handle is
required for all other
function blocks

MODBUS_CLOSE_INSTANCE M/S Close a communication 5.3
instance
MODBUS_REGISTER_VAR_LIST S Register a list of PLC 5.4

variables which should be
linked to Modbus registers
in Slave Mode

MODBUS_READ_REGS M 03n 16 bit | Read multiple holding 5.5
word | registers
(e.g. configuration
registers)

MODBUS_WRITE_SINGLE_REG M 06+ 16 bit | Write single holding 5.6
word | register
(e.g. configuration register)

MODBUS_WRITE_MULTI_REGS M 104 16 bit | Write multiple holding 5.7
word | registers
(e.g. configuration
registers)

MODBUS_READ_WRITE_REGS M 174 16 bit | Read and Write multiple 5.8
word | holding registers in a
single Modbus transaction
(e.g. configuration
registers)

MODBUS_READ_INPUT_REGS M 041 16 bit [Read multiple input 5.9
word | registers
(e.g. analog inputs)

© SYSTEC electronic GmbH 2016 L-1829-01 7

SYS TEC specific Modbus Function Block Library for OpenPCS

Function Block Master |Fnct. | Data | Meaning Sect.
Slave |[Code |Width
MODBUS_READ_DISCR_INPUTS M 02+ 1 bit | Read multiple discrete 5.10
input registers
(e.g. digital inputs)
MODBUS_READ_COILS M 01w 1 bit | Read multiple coils 5.11
(e.g. read back digital
outputs)
MODBUS_WRITE_SINGLE_COIL M 05+ 1 bit | Write single coil 5.12
(e.g. digital output)
MODBUS_WRITE_MULTI_COILS M OFH 1 bit | Write multiple coils 5.13
(e.g. digital outputs)
MODBUS_RAW_PDU_REQUEST M Exchanges raw PDU 5.14
telegrams with a Modbus
Slave device

2.2 Modbus Master Basics

Using the PLC as Modbus Master, the PLC program can read and write registers on remote slave
devices using the following Modbus master specific function blocks:

MODBUS_READ_REGS
MODBUS_WRITE_SINGLE_REG
MODBUS_WRITE_MULTI_REGS
MODBUS_READ_WRITE_REGS
MODBUS_READ_INPUT_REGS
MODBUS_READ_DISCR_INPUTS
MODBUS_READ_COILS
MODBUS_WRITE_SINGLE_COIL
MODBUS_WRITE_MULTI_COILS
MODBUS_RAW_PDU_REQUEST

Each of the listed function blocks above has an input parameter SLAVE_ADDR. The usage of this
slave address depends on the communication type:

Modbus/RTU: On Modbus/RTU the master is connected to its slave devices on a serial bus
(commonly a RS-485 bus). The handle for the communication instance created
by function block MODBUS_OPEN_INSTANCE is related to the local serial
interface only. The communication parameter string COMM_PARAMS of
function block MODBUS_OPEN_INSTANCE (see section 5.2) specifies only
communication parameters for the local serial interface such as interface
number and baudrate. Thus, in case of Modbus/RTU the parameter
SLAVE_ADDR of the master specific function blocks defines the device address
of the remote slave on the serial bus. Valid slave addresses are in range 1..247.
The address 0 can be used for broadcast messages.

Modbus/TCP: On Modbus/TCP the slave device is unequivocally addressed by its IP address
and port number. Both values are already set in the communication parameter
string COMM_PARAMS of function block MODBUS_OPEN_INSTANCE (see
section 5.2). Thus, in case of Modbus/TCP the parameter SLAVE_ADDR of the
master specific function blocks must be set to 255.

© SYSTEC electronic GmbH 2016 L-1829-01 8

SYS TEC specific Modbus Function Block Library for OpenPCS

Exception: If the target device is reachable only via a gateway, then the IP
address and port number specified with the communication
parameter string COMM_PARAMS addresses the gateway and
SLAVE_ADDR defines the slave device address in the
destination network.

Using the PLC as Modbus Master requires the following steps:

(M1) Open a Modbus instance by calling the function block MODBUS_OPEN_INSTANCE (see
section 5.2); on input DEV_TYPE either MBDT_TCP_MASTER or MBDT_RTU_MASTER has
to be defined (see section 4.2)

(M2) Call a Modbus master specific function block, using the instance handle created in step (M1)
and setting parameter SLAVE_ADDR as described above.

2.3 Modbus Slave Basics

Using the PLC as Modbus Slave, the PLC program can register a set of PLC variables which should
be accessible from a remote master. The runtime configuration of a single variable is described in the
PLC structure MODBUS_DATA_POINT (resp. MODBUS_DATA_POINT_VAR_REF, see section 4.4).
This structure includes the following information:

e Modbus object type (discrete input, coil, input register, holding register)
e Modbus register number
e Pointer to PLC variable

The individual MODBUS_DATA_POINT structures for each variable are joined together in an array. By
adjusting the array size the user can link as many variables as needed to the Modbus stack. The
whole array is registered to the Modbus stack by calling the function block
MODBUS_REGISTER_VAR_LIST (see section 5.4).

The structure MODBUS_DATA_POINT in conjunction with the FB MODBUS_REGISTER_VAR_LIST
provides a maximum flexibility to the user for designing its individual Modbus Slave register layout.

Using the PLC as Modbus Slave requires the following steps:

(S1) Open a Modbus instance by calling the function block MODBUS_OPEN_INSTANCE (see
section 5.2); on input DEV_TYPE either MBDT_TCP_SLAVE or MBDT_RTU_SLAVE has to be
defined (see section 4.2)

(S2) Create the slave variables list as ARRAY[x..y] OF MODBUS_DATA_POINT (see section 4.4)
(S3) Register the slave variables list registered to the Modbus stack by calling the function block

MODBUS_REGISTER_VAR_LIST (see section 5.4); the Modbus instance handle created in
step (S1) binds to variables list to the dedicated interface.

© SYSTEC electronic GmbH 2016 L-1829-01 9

SYS TEC specific Modbus Function Block Library for OpenPCS

3 Error Codes of Modbus Function Blocks

Table 2 lists the Error Codes used by all function blocks of type MODBUS_Xxx for output ERROR.

Table 2: Error Codes of Modbus Function Blocks used for output ERROR

0 FB execution was successfully, no error occurred
1 Invalid parameter (e.g. structure has an unexpected size; enumerator has an
unknown value etc.)
2 Pointer references an object with an unsupported data type
3 Out of resources (e.g. out of memory, or not more instances available)
4 A slave instance with requested connection already exists
5 Requested resource is busy
6 Connection to remote node failed
7 Master request failed (e.g. timeout)
8 Invalid handle
9 Size of yariable in User/PLC program doesn't match with number of registers to
read/write
10 Requested function only available for Master (requires handle for Master instance)
11 Requested function only available for Slave (requires handle for Slave instance)
12 Invalid data point configuration for ModBus slave variable
255 Function not implemented on the PLC

Table 3 lists the Error Info Codes used by all Modbus master function blocks for output ERROR_INFO.
These codes are the internal error codes of the underlying Modbus protocol stack.

Table 3: Error Info Codes of Modbus Function Blocks used for output ERROR_INFO

No error

lllegal register address

lllegal argument

Porting layer error

Insufficient resources

I/O error

Protocol stack in illegal state

Retry 1/0O operation

(I N|O|O|d|lW|N|FL|O

Timeout error occurred

(=Y
o

lllegal function exception

=
=

lllegal data address

© SYSTEC electronic GmbH 2016 L-1829-01 10

SYS TEC specific Modbus Function Block Library for OpenPCS

12 lllegal data value

13 Slave device failure

14 Slave acknowledge

15 Slave device busy

16 Memory parity error

17 Gateway path unavailable

18 Gateway target device failed to respond

© SYSTEC electronic GmbH 2016 L-1829-01 11

SYS TEC specific Modbus Function Block Library for OpenPCS

4 Type Definitions for Modbus Function Blocks

All types shown in this section are defined global in the OpenPCS Programming System environment.
They must not be redeclared in the User/PLC program. All of this global defined Modbus types can be
used within User/PLC program as common standard types, e.g. INT or POINTER.

4.1 Data Type HMODBUS

The data type HMODBUS is globally defined in OpenPCS. It is used as a "Handle to Modbus
Instance". It is returned by function block MODBUS_OPEN_INSTANCE (see section 5.2) and is used
as input parameter for all other function blocks.

TYPE
HMODBUS : DINT;
END TYPE

4.2 Enum MODBUS_DEV_TYPE

The enumerator MODBUS_DEV_TYPE is globally defined in OpenPCS. It is specifies the kind of
Modbus Instance for the own device. It is used to create a new instance by calling the function block
MODBUS_OPEN_INSTANCE (see section 5.2).

GLOBAL TYPE BEGIN
TYPE
MODBUS DEV_TYPE :
(MBDT NOT_SET,
MBDT TCP SLAVE,
MBDT RTU_SLAVE,
MBDT TCP MASTER,
MBDT RTU_ MASTER
) := MBDT NOT SET;
END_TYPE
GLOBAL TYPE_ END

: Device Type uninitialized / not set ¥*)
: Device is ModBus TCP Slave *)

: Device 1s ModBus RTU Slave *)

: Device is ModBus TCP Master *)

: Device 1s ModBus TCP Master *)

* % X X o
B w Nk O

The device type defined by the enumerator MODBUS_DEV_TYPE refers to the own device. It is used
for creating the appropriate instance handle with MODBUS_OPEN_INSTANCE. Table 4 explains the
enumerator values of MODBUS_DEV_TYPE.

Table 4: Description of MODBUS_DEV_TYPE

Type Description
MBDT_TCP_MASTER, The own PLC wants to act as master using the master function blocks
MBDT_RTU_MASTER listed in Table 1

The own PLC wants to run as slave linking a list of PLC variables to
Modbus registers via function block MODBUS_REGISTER_VAR_LIST
(see section 5.4)

MBDT_TCP_SLAVE,
MBDT_RTU_SLAVE

© SYSTEC electronic GmbH 2016 L-1829-01 12

SYS TEC specific Modbus Function Block Library for OpenPCS

4.3 Enum MODBUS_OBJ_TYPE

The enumerator MODBUS_OBJ_TYPE is globally defined in OpenPCS. It specifies to which register
category a User/PLC variable should be linked in Modbus Slave Mode. This type is used for
registering PLC variables with function block MODBUS_REGISTER_VAR_LIST (see section 5.4).

GLOBAL_TYPE BEGIN
TYPE
MODBUS OBJ TYPE :
(MBOT NOT_ SET,
MBOT DISCRETE INPUT,
MBOT_COILS,
MBOT INPUT REGISTERS,
MBOT HOLDING REGISTERS
) := MBOT NOT SET;
END TYPE
GLOBAL TYPE_ END

: Variable uninitialized / not set *)

: Bit Variables of an I/0 System *)

: Bit Variables of an Application *)

: 1ébit Word Variables of an I/0 System *)
: 16bit Word Variables of an Application *)

* % Xk X o
S w Nk O

4.4 Structure MODBUS_DATA_POINT_Xxx

The both alternative structures MODBUS_DATA_POINT and MODBUS_DATA POINT_VAR_REF are
globally defined in OpenPCS. They specify mapping information to link a User/PLC variable to a
Modbus register in Slave Mode. These structures are used for registering PLC variables with function
block MODBUS_REGISTER_VAR_LIST (see section 5.4).

The more effective structure MODBUS_DATA _POINT uses a POINTER for a direct addressing of the
variable associated with this Modbus data point (member 'm_pDataVar', see section 4.4.1). Using this
feature effectuates an easy and clear program structure. However, POINTER in structures is a new
feature of OpenPCS which is only available since OpenPCS version 6.8.0.

For backward compatibility to OpenPCS versions before 6.8.0 (up to and including OpenPCS version
6.7.4) the alternative structure MODBUS_DATA _POINT_VAR_REF is supported. This structure
doesn't contain a member of type POINTER, but the 4 equivalent members 'm_udiDataVarMemAdd',
'm_usiDataVarBitAdd', 'm_usiDataVarCbeType' and 'm_uiDataVarSize' (see section 4.4.2). The
information content of these 4 members is exactly the same as for the one member 'm_pDataVar' in
structure MODBUS_DATA_POINT. The Firmware Function POINTER_TO_VARREF converts a given
pointer variable into these 4 separate parameters (see example in section 4.4.2).

The structure MODBUS_DATA_POINT_VAR_REF is maintained even in newer versions of
OpenPCS. Thus, PLC programs using structure MODBUS_DATA_POINT_VAR_REF can also used in
with newer version of OpenPCS without any changes.

4.4.1 Structure MODBUS_DATA_POINT

The structure MODBUS_DATA_POINT specifies mapping information to link a User/PLC variable to a
Modbus register in Slave Mode. This structure is used for registering PLC variables with function block
MODBUS_REGISTER_VAR_LIST (see section 5.4).

© SYSTEC electronic GmbH 2016 L-1829-01 13

SYS TEC specific Modbus Function Block Library for OpenPCS

GLOBAL_TYPE BEGIN

TYPE
MODBUS DATA POINT : STRUCT
m ObjType : MODBUS OBJ TYPE; (* ModBus Object Type *)
m uiDataAddr : UINT; (* Register/Coil Number (0..65535) *)
m_pDataVar : POINTER; (* Pointer to associated Variable *)
END_ STRUCT;
END TYPE

GLOBAL_TYPE END

Important: This structure is applicable only from OpenPCS version 6.8.0. For older OpenPCS
versions up to and including version 6.7.4 the alternative structure
MODBUS_DATA_POINT_VAR_REF has to be used (see section 4.4.2).

Example:

The following code snippet shows how to create a data point for a variable using the structure
MODBUS_DATA_POINT. The bold red marked part handles the pointer addressing.

VAR

(* ModBus Data Variable *)

xModbusDataVar : BOOL := TRUE;

(* Slave Variables List *)

aMdeus_DataPoinﬁ_List : ARRAY[1..1] OF MODBUS DATA POINT;
END_ VAR

aModBus DataPoint List[1].m ObjType
aModBus DataPoint List[1].m uiDataAddr :
aModBus_DataPoint List[1].m _pDataVar

MBOT DISCRETE INPUT;
1;
&xModbusDataVar,

4.4.2 Structure MODBUS_DATA_POINT_VAR_REF

The structure MODBUS_DATA_POINT_VAR_REF is used for backward compatibility to support
Modbus functionality even for OpenPCS versions before 6.8.0 (up to and including OpenPCS version
6.7.4). For OpenPCS 6.8.0 or newer the alternative and more comfortable MODBUS_DATA_POINT is
recommended (see section 4.4.1).

The structure MODBUS_DATA_POINT_VAR_REF specifies mapping information to link a User/PLC
variable to a Modbus register in Slave Mode. This structure is used for registering PLC variables with
function block MODBUS_REGISTER_VAR_LIST (see section 5.4). The runtime values for members
'm_udiDataVarMemAdd', 'm_usiDataVarBitAdd', 'm_usiDataVarCbeType' and 'm_uiDataVarSize' has
to be requested by using the firmware function POINTER_TO_VARREF. This converts a given pointer
variable into these 4 parameters (see example below).

GLOBAL_TYPE BEGIN

TYPE
MODBUS DATA POINT VAR REF : STRUCT
m ObjType : MODBUS OBJ_ TYPE; (* ModBus Object Type *)
m_uiDataAddr : UINT; (* Register/Coil Number (0..65535) *)
m_ udiDataVarMemAdd : UDINT; (* -+ *)
m usiDataVarBitAdd : USINT; (* | Reference to associated Var. *)
m usiDataVarCbeType : USINT; (* | as 'embedded' struct 'VAR REF' *)
m uiDataVarSize : UINT; (* -+ *)
END_STRUCT;
END TYPE

GLOBAL_TYPE END

© SYSTEC electronic GmbH 2016 L-1829-01 14

SYS TEC specific Modbus Function Block Library for OpenPCS

Note: For OpenPCS systems newer then version 6.7.4 the more comfortable and easier-to-
use structure MODBUS_DATA_POINT is recommended (see section 4.4.1).

Example:

The following code snippet shows how to create a data point for a variable using the structure
MODBUS_DATA_POINT_VAR_REF. The bold red marked part handles the pointer reference
addressing.

VAR

(* ModBus Data Variable *)

xModbusDataVar : BOOL := TRUE;
VarRef : VAR REF;
pVarPtr : POINTER;

(* Slave Variables List *)
aModBus DataPoint List : ARRAY[1..1] OF MODBUS DATA POINT VAR REF;

END_VAR

(* Get 'VarRef' for ModBus Data Variable *)
pVarPtr := &xModbusDataVar,
VarRef := POINTER TO VARREF (pVarPtr);

aModBus DataPoint List[1].m ObjType

aModBus DataPoint List[1].m uiDataAddr
aModBus DataPoint List[1].m_udiDataVarMemAdd
aModBus DataPoint List[1].m usiDataVarBitAdd
aModBus_DataPoint List[1].m _usiDataVarCbeType :
aModBus DataPoint List[1].m uiDataVarSize

MBOT_DISCRETE_INPUT;

1;

VarRef.m udiMemAddress;
VarRef.m usiBitAddress;
VarRef.m _usiCbeType;
VarRef.m uiDataSize;

4.5 Representation of PLC Variables on Modbus

The memory layout of the variables in the PLC program (little-endian, big-endian) depends on the
CPU type of the PLC device. However, on Modbus all 16 bit register word are transmitted with high-
byte first (big-endian). Therefore the PLC firmware converts the data representation from the host
memory layout into the Modbus standard big-endian format.

Table 5 in Appendix A describes in detail how PLC variables are mapped to Modbus registers.

© SYSTEC electronic GmbH 2016 L-1829-01 15

SYS TEC specific Modbus Function Block Library for OpenPCS

5 Function Blocks

5.1 Synchronization between the Modbus Function Blocks and PLC Program

Internally most of the Modbus library function blocks are executed asynchronous to the PLC program.
The synchronization between the function blocks and the PLC program is performed by the ENABLE
input and CONFIRM output. The interaction of both signals is shown in Figure 1.

ENABLE

CONFIRM

(@ | ©
CHRLE

5 6

bbbt

Figure 1: Process synchronization between Function Block and PLC Program

The complete execution cycle of a function block asynchronously to the PLC program is performed by
following steps:

1.

After the PLC program has provided all data to the inputs, it set ENABLE to TRUE and calls the
function block (call 1). The function block recognizes a rising edge at ENABLE and samples all
input data (step (a)). The requested operation is started internally and the function block returns to
the PLC program. The started operation itself runs asynchronously in the background.

. The PLC program calls the function block in the following PLC cycles and holds ENABLE on

TRUE. The function block internally runs the requested operation in background (calls 2 and 3).

If the requested operation has been finished (either successfully or with an error), the outputs
CONFIRM, ERROR and ERRORINFO are set accordingly. On a successfully completion the
output CONFIRM is set to TRUE. In this case, the data outputs of the function block contain valid
data. In case of any error, the outputs ERROR and ERRORINFO signals the error reason (step (b),
call 4).

The PLC program reads the output data and after that it confirms the function block by setting input
ENABLE to FALSE. On the next call the function block reset it's internally state and clears all
outputs (step (c), call 5). By setting output CONFIRM to FALSE the function block signals it's
readiness for the next operation request (step (d)).

The output CONFIRM is only set to TRUE, if the requested operation has been completed
successfully. In case of any error, the outputs ERROR or ERRORINFO are setting accordingly.
Therefore it's necessary that a PLC program always checks CONFIRM as well as ERROR.

If the PLC program calls the function block with ENABLE := FALSE during an asynchronously
operation is running in the background, the active operation will canceled and the function resets it's
internally state to inactive and clears all outputs.

© SYSTEC electronic GmbH 2016 L-1829-01 16

SYS TEC specific Modbus Function Block Library for OpenPCS

5.2 Function Block MODBUS_OPEN_INSTANCE

The function block MODBUS_OPEN_INSTANCE opens a new communication instance.

Prototype of the Function Block

MODBUS OPEN INSTANCE |
|

MODBUS DEV_TYPE ---|DEV_TYPE MODBUS_ HANDLE | -—- HMODBUS
STRING (250) --—|COMM_PARAMS
BOOL -—-|AUTO_ RECONNECT
I I
BOOL --— | ENABLE CONFIRM|--- BOOL
| ERROR|--- USINT
| ERRORINFO|--- DINT
I I
i LT e et +

Meaning of Operands

DEV_TYPE

COMM_PARAMS

AUTO_RECONNECT

ENABLE

CONFIRM

ERROR
ERRORINFO

Description

Specifies which role the own device gets for the connection to be created.
This parameter specifies the kind of destination node. Possible values are
defined as enumerator MODBUS_DEV_TYPE (see section 4.2).

String with open parameters for the communication interface. The parameter
string depends on the used interface. For details see text below.

TRUE: instructs the Modbus stack to auto-reconnect to the slave node in
case of a communication interruption

FALSE: an interrupted communication is not automatically reconnected by
the Modbus stack

Input for enabling or disabling the FB (see section 5.1)

Output for ready signaling by the FB (see section 5.1)

Execution result of the FB; possible error codes are defined in Table 2
Additionally error information (max. number of possible connections, see text
below)

This function block opens a new communication instance. The parameter DEV_TYPE specifies the
type of the destination node. The possible values are defined as enumerator MODBUS_DEV_TYPE
(see section 4.2). For example, DEV_TYPE := MBDT_TCP_SLAVE is used to open a communication
instance to a Modbus TCP Slave device.

The parameter COMM_PARAMS specifies the communication parameter necessary to open the
connection to the destination node. The structure depends on the communication interface type
(Ethernet for Modbus/TCP or serial interface for Modbus/RTU):

© SYSTEC electronic GmbH 2016 L-1829-01 17

SYS TEC specific Modbus Function Block Library for OpenPCS

Communication Parameter string for Master to open a connection to a Modbus/TCP Slave:

Scenario:

Format:

IfNum:
IpAddr:
PortNum:

Example:

Simplifications:

COMM_PARAMS:=

'ETHO0#192.168.1.27";

own PLC operates as Master
remote devices operates as Slave

ETH<IfNum>#<IpAddr>:<PortNum>

Interface number to communicate with destination slave (e.g. "0" for ETHO)
IP address of destination slave (e.g. "192.168.1.27")

Port number on destination slave (e.g. "502" for default Modbus port)
ETHO0#192.168.1.27:502

In this example the local interface 'ETHO" is used to establish a connection from
Master to the Slave device with IP address '192.168.1.27', port number 502.

The specified Ethernet device with the specified IP
address and Modbus default port (502) is used.

Communication Parameter string for Master to open a connection to a Modbus/RTU Slave:

Scenario:

Format:

IfNum:
BaudRate:
Parity:

FrameTimeout:

RespTimeout:

Example:

Note:

own PLC operates as Master
remote devices operates as Slave

SIO<IfNum>#<BaudRate>,<Parity>,<FrameTimeout>, <RespTimeout>

Interface number to communicate with destination slave (e.g. "2" for SIO2)
Baudrate (e.g. "19200" or "115200")

'‘N' = none parity (2 stop bits are used, see note below)

'‘O' = odd parity (1 stop bit is used, see note below)

'E' = even parity (1 stop bit is used, see note below)

Optional frame timeout in number of characters. This value specifies a number
of characters for the silent interval between two frames. Depending on baudrate
this number of characters is converted in the internal wait time.

If no explicit frame timeout is set in the communication parameter string then a
standard timeout of 10 ms is used.

Optional response timeout in ms. This value specifies the maximum time period
within the master expects a response from the slave. If no response was
received from the slave within this period, than a communication timeout is
signaled (output ERRORINFO is set to "Timeout error occurred”, see Table 3 in
section 3).

If no explicit timeout is set in the communication parameter string then a
standard timeout of 500 ms is used

S102#115200,E,20,1000

In this example the local interface 'SIO2' on Master is used. The serial port is
configured to 115200 baud with even parity. The frame timeout is set to 20 ms
and the response timeout is configured with 1000 ms.

In a Modbus frame each character is encoded with 11 bits. The character starts
with 1 start bit, followed by 8 data bits. If parity is used, then 1 parity bit and 1
stop bit are appended. If no parity is used, then 2 stop bits are appended.

© SYSTEC electronic GmbH 2016

L-1829-01 18

SYS TEC specific Modbus Function Block Library for OpenPCS

Communication Parameter string for Slave to run own device as Modbus/TCP Slave:

The Communication Parameter string for Modbus/TCP Slave mode doesn't include an IP address
section. In Modbus/TCP Slave mode the PLC always uses the configured system IP address of the
selected Ethernet interface. The procedure for configuring the system IP address depends on the
target. The respective System Manual describes the necessary details on this (e.g. configuring the
IP address in Bootloader on Linux devices or setting the IP address in the Configuration Command

Shell).

Scenario:

Format:

IfNum:
PortNum:

Example:

Simplifications:

own PLC operates as Slave
remote devices operates as Master

ETH<IfNum>#:<PortNum>

Interface number (e.g. "0" for ETHO); the configured system IP address of this
interface is used for Modbus Slave

Port number (e.g. "502" for default Modbus port)

ETHO#:502

In this example the local interface 'ETHO' on Slave is used. The Slave is
assigned to port number 502.

COMM_PARAMS:="; On an empty parameter string the default Ethernet device

COMM_PARAMS:=

(typically 'ETHO") with Modbus default port (502) is used.

'ETHO" The specified Ethernet device with its configured system

IP address and Modbus default port (502) is used.

Communication Parameter string for Slave to run own device as Modbus/RTU Slave:

Scenario:

Format:
IfNum:

BaudRate:
Parity:

FrameTimeout:

NodeAddr:

Example:

own PLC operates as Slave
remote devices operates as Master

SIO<IfNum>#<BaudRate>, <Parity>,<FrameTimeout>@<NodeAddr>

Interface number (e.g. "2" for SI02)
Baudrate (e.g. "19200" or "115200")

'‘N' = none parity (2 stop bits are used, see note below)
'‘O' = odd parity (1 stop bit is used, see note below)
'E' = even parity (1 stop bit is used, see note below)

Optional frame timeout in number of characters. This value specifies a number
of characters for the silent interval between two frames. Depending on baudrate
this number of characters is converted in the internal wait time.

If no explicit frame timeout is set in the communication parameter string then a
standard timeout of 10 ms is used.

Own Modbus/RTU Slave address (e.g. "12" for running own device as Node 12)

SI02#115200,E,20@12
In this example the local interface 'SIO2' on Slave is used. The serial port is

configured to 115200 baud with even parity. The frame timeout is set to 20 ms.
The Slave is assigned to node address 12.

© SYSTEC electronic GmbH 2016 L-1829-01 19

SYS TEC specific Modbus Function Block Library for OpenPCS

Note: In a Modbus frame each character is encoded with 11 bits. The character starts
with 1 start bit, followed by 8 data bits. If parity is used, then 1 parity bit and 1
stop bit are appended. If no parity is used, then 2 stop bits are appended.

The parameter AUTO_RECONNECT instructs the Modbus stack either to automatically reconnet an
interrupted communication to a Modbus Slave device or not.

If the function block was able to open the connection successfully, an appropriate handle is returned
on output MODBUS_HANDLE. This handle is requested for further calls of all other function blocks.

If the function block set its output CONFIRM to TRUE, the requested operation has been finished

successfully. Otherwise the output ERROR signals an appropriate error code according to Table 2.
Additionally, output ERROR_INFO is set to the maximum number of possible connections.

5.3 Function Block MODBUS_CLOSE_INSTANCE

The function block MODBUS_CLOSE_INSTANCE closes an existing communication instance.

Prototype of the Function Block

[MODBUS_CLOSE_INSTANCE |
I I

HMODBUS —---|MODBUS HANDLE |
[|
BOOL ---|ENABLE CONFIRM|--- BOOL
| ERROR|--- USINT
| ERRORINFO|--- DINT
[[
e LD E DL e D e L e P +
Meaning of Operands
MODBUS_HANDLE Handle of the communication instance to close
ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information

Description

This function block closes a communication instance, opened prior by function block
MODBUS_OPEN_INSTANCE (see section 5.2).

If the function block set its output CONFIRM to TRUE, the requested operation has been finished
successfully. Otherwise the output ERROR signals an appropriate error code according to Table 2.

© SYSTEC electronic GmbH 2016 L-1829-01 20

SYS TEC specific Modbus Function Block Library for OpenPCS

5.4 Function Block MODBUS_REGISTER_VAR_LIST

The function block MODBUS_REGISTER_VAR_LIST registers a set of PLC variables which should be
accessible from a remote master.

Prototype of the Function Block

| MODBUS REGISTER VAR LIST

|
I |

HMODBUS —---|MODBUS_HANDLE
\
|

POINTER -—--|DATA POINT LIST
|
| |
BOOL --- | ENABLE CONFIRM|--- BOOL
| ERROR|--- USINT
| ERRORINFO|--- DINT
| |
et e L LD LD LD e D e L L P +
Meaning of Operands
MODBUS_HANDLE Handle of the communication instance to use; this handle is to request by

calling MODBUS_OPEN_INSTANCE (see section 5.2).

DATA_POINT_LIST Pointer to slave the slave variables list, defines as
ARRAY[x..y] OF MODBUS_DATA POINT (see section 4.4)

ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information (number of the array element which has

caused this error, see text below)

Description

This function block registers a set of PLC variables which should be accessible from a remote master.
Each single variable is defined by its individual instance of the MODBUS_DATA_POINT structure (see
section 4.4). All data point instances are joined together in an array:

aModBus DataPoint List : ARRAY[x..y] OF MODBUS DATA POINT;

By adjusting the array size (lower/upper boundary x, y) the user can link as many variables as needed
to the Modbus stack. The whole array is registered to the Modbus stack by calling the function block
MODBUS_REGISTER_VAR_LIST. The function block internally checks the data point array for
validity. If there is any incorrectness, then the function block stops checking on the first faulty element.
The output ERROR describes the error reason (see Table 2 in section 3) and the output ERRORINFO
is set to the number of the array element which has caused this error.

The parameter MODBUS_HANDLE identifies the communication instance to use. The handle is
created by function block MODBUS_OPEN_INSTANCE (see section 5.2). To create a handle suitable
for a Modbus slave instance, the function block MODBUS_OPEN_INSTANCE has to be called by
setting input DEV_TYPE either to MBDT_TCP_SLAVE or to MBDT_RTU_SLAVE (see section 4.2).

Section 2.3 describes basics about using the PLC as Modbus Slave.

© SYSTEC electronic GmbH 2016 L-1829-01 21

SYS TEC specific Modbus Function Block Library for OpenPCS

Example:

The following code snippet shows how to create and register a slave variables list:

VAR

(* ModBus Data Variables *)

xModbusDataVar Digiln : BOOL;

uiModbusDataVar AnalogIn : UINT;

wModbusDataVar ModeConfig : WORD;

(* Slave Variables List *)

aModBus DataPoint List : ARRAY[I1..3] OF MODBUS DATA POINT;

paModBus DataPoint List : POINTER;

FB ModBusRegisterVarList : MODBUS REGISTER VAR LIST;
END_VAR

(* Link 'xModbusDataVar DigiIn' as Regl @ DISCRETE INPUT *)
aModBus DataPoint List[1].m ObjType MBOT DISCRETE INPUT;
aModBus DataPoint List[1].m uiDataAddr := 1;

aModBus DataPoint List[1]. m pDataVar := &xModbusDataVar Digiln;

(* Link 'uiModbusDataVar AnalogIn' as ReglO @ INPUT REGISTERS *)

aModBus DataPoint List[2].m ObjType := MBOT INPUT REGISTERS;
aModBus DataPoint List[2].m uiDataAddr := 10;
aModBus DataPoint List[2]. m pDataVar := &uiModbusDataVar AnalogIn;

(* Link 'wModbusDataVar ModeConfig' as Reg20 @ HOLDING REGISTERS *)

aModBus DataPoint List[3].m ObjType := MBOT HOLDING REGISTERS;
aModBus DataPoint List[3].m uiDataAddr := 20;
aModBus DataPoint List[3]. m pDataVar := &wModbusDataVar ModeConfig;

(* Register ModBus DataPoint List *)

paModBus DataPoint List := &aModBus DataPoint List;

FB ModBusRegisterVarList (
MODBUS HANDLE hModbusInst,
DATA POINT LIST paModBus DataPoint List,
ENABLE := TRUE;

© SYSTEC electronic GmbH 2016 L-1829-01

22

SYS TEC specific Modbus Function Block Library for OpenPCS

5.5 Function Block MODBUS_READ_REGS

The function block MODBUS_READ_REGS reads multiple holding registers from a Modbus slave
device (e.g. configuration registers).

Modbus Function Code: 034

Prototype of the Function Block

| MODBUS READ REGS

|
|
HMODBUS —---|MODBUS_HANDLE
USINT -—--|SLAVE ADDR
UINT -—--|REG_START ADDR
UINT --—|REG_COUNT
POINTER --—|DATA BUFFER
[|
BOOL -—— | ENABLE CONFIRM|--- BOOL
| ERROR|--- USINT
| ERRORINFO|--- DINT
[|
B +
Meaning of Operands
MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)

REG_START_ADDR Address of the first 16-bit holding register to read

REG_COUNT Number of 16-bit holding registers to read

DATA_BUFFER Address of an object (single variable or array) for receiving the register
data to read (see section 4.5)

ENABLE Input for enabling or disabling the FB (see section 5.1)

CONFIRM Output for ready signaling by the FB (see section 5.1)

ERROR Execution result of the FB; possible error codes are defined in Table 2

ERRORINFO Additionally error information; possible codes are defined in Table 3

Description

This function block reads multiple holding registers from a Modbus slave device (e.g. configuration
registers). The required handle for parameter MODBUS_HANDLE has to be created by using the
function block MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter
SLAVE_ADDR is described in section 2.2. The pointer DATA_BUFFER addresses a data object which
acts as receive buffer for the requested data (see section 4.5 for details about representation of PLC
variables on Modbus).

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the reading
request is still running. The function block signals a successfully completion of the read operation by
setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps FALSE and the
output ERROR is set to an appropriate error code according Table 2.

© SYSTEC electronic GmbH 2016 L-1829-01 23

SYS TEC specific Modbus Function Block Library for OpenPCS

5.6 Function Block MODBUS_WRITE_SINGLE_REG

The function block MODBUS_WRITE_SINGLE_REG writes a single holding register to a Modbus
slave device (e.g. configuration register).

Modbus Function Code: 064

Prototype of the Function Block

| MODBUS WRITE SINGLE REG
I

|
|

HMODBUS —---|MODBUS_HANDLE

USINT -—--|SLAVE ADDR

UINT -—--|REG_ADDR

WORD ---|DATA
| [

BOOL -—— | ENABLE CONFIRM|--- BOOL
| ERROR|--- USINT
| ERRORINFO|--- DINT
| [
o +

Meaning of Operands
MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)

REG_ADDR Address of the 16-bit holding register to write

DATA Register data to send

ENABLE Input for enabling or disabling the FB (see section 5.1)

CONFIRM Output for ready signaling by the FB (see section 5.1)

ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information; possible codes are defined in Table 3
Description

This function block writes a single holding register to a Modbus slave device (e.g. configuration
register). The required handle for parameter MODBUS_HANDLE has to be created by using the
function block MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter
SLAVE_ADDR is described in section 2.2. The input DATA contains the register data to send.

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the
transmission request is still running. The function block signals a successfully completion of the write
operation by setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps
FALSE and the output ERROR is set to an appropriate error code according Table 2.

© SYSTEC electronic GmbH 2016 L-1829-01 24

SYS TEC specific Modbus Function Block Library for OpenPCS

5.7 Function Block MODBUS_WRITE_MULTI_REGS

The function block MODBUS_WRITE_MULTI_REGS writes multiple holding registers to a Modbus
slave device (e.g. configuration registers).

Modbus Function Code: 104

Prototype of the Function Block

| MODBUS WRITE MULTI REGS
I

|
|
HMODBUS —---|MODBUS_HANDLE
USINT -—--|SLAVE ADDR
UINT -—--|REG_START ADDR
UINT --—|REG_COUNT
POINTER --—|DATA BUFFER
[|
BOOL -—— | ENABLE CONFIRM|--- BOOL
| ERROR|--- USINT
| ERRORINFO|--- DINT
[|
B +
Meaning of Operands
MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)
REG_START_ADDR Address of the first 16-bit holding register to write

REG_COUNT Number of 16-bit holding registers to write

DATA_BUFFER Address of an object (single variable or array) which contains the register

data to send (see section 4.5)

ENABLE Input for enabling or disabling the FB (see section 5.1)

CONFIRM Output for ready signaling by the FB (see section 5.1)

ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information; possible codes are defined in Table 3
Description

This function block writes multiple holding registers to a Modbus slave device (e.g. configuration
registers). The required handle for parameter MODBUS_HANDLE has to be created by using the
function block MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter
SLAVE_ADDR is described in section 2.2. The pointer DATA_BUFFER addresses a data object which
contains the register data to send (see section 4.5 for details about representation of PLC variables on
Modbus).

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the
transmission request is still running. The function block signals a successfully completion of the write
operation by setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps
FALSE and the output ERROR is set to an appropriate error code according Table 2.

© SYSTEC electronic GmbH 2016 L-1829-01 25

SYS TEC specific Modbus Function Block Library for OpenPCS

5.8 Function Block MODBUS_READ_WRITE_REGS

The function block MODBUS_READ_WRITE_REGS reads and writes multiple holding registers to a
Modbus slave device in a single Modbus transaction (e.g. configuration registers).

Modbus Function Code:

174

Prototype of the Function Block

MODBUS _READ WRITE REGS

|
|
HMODBUS ---|MODBUS_HANDLE |
USINT --—| SLAVE_ADDR |
UINT --—|WR_REG_START ADDR |
UINT --—|WR_REG_COUNT |
POINTER --—|WR_DATA BUFFER |
UINT --—|RD_REG _START ADDR |
UINT --—|RD_REG_COUNT |
POINTER --—|RD_DATA BUFFER |
| |
BOOL --—| ENABLE CONFIRM| --- BOOL
| ERROR| —--- USINT
| ERRORINFO| --— DINT
| |
o +

Meaning of Operands

MODBUS_HANDLE

SLAVE_ADDR
WR_REG_START_ADDR
WR_REG_COUNT

WR_DATA_BUFFER

RD_REG_START_ADDR
RD_REG_COUNT
RD_DATA_BUFFER
ENABLE

CONFIRM

ERROR
ERRORINFO

Handle of the communication instance to use; this handle has to be
requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

Slave address of the remote node (see section 2.2)
Address of the first 16-bit holding register to write
Number of 16-bit holding registers to write

Address of an object (single variable or array) which contains the register
data to send (see section 4.5)

Address of the first 16-bit holding register to read
Number of 16-bit holding registers to read

Address of an object (single variable or array) for receiving the register
data to read (see section 4.5)

Input for enabling or disabling the FB (see section 5.1)

Output for ready signaling by the FB (see section 5.1)

Execution result of the FB; possible error codes are defined in Table 2
Additionally error information; possible codes are defined in Table 3

© SYSTEC electronic GmbH 2016 L-1829-01 26

SYS TEC specific Modbus Function Block Library for OpenPCS

Description

This function block reads and writes multiple holding registers to a Modbus slave device in a single
Modbus transaction (e.g. configuration registers). The write operation is performed before the read
operation. The required handle for parameter MODBUS_HANDLE has to be created by using the
function block MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter
SLAVE_ADDR is described in section 2.2. The pointer WR_DATA_BUFFER addresses a data object
which contains the register data to send. The pointer RD_DATA BUFFER addresses a data object
which acts as receive buffer for the requested data (see section 4.5 for details about representation of
PLC variables on Modbus).

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the Modbus
data transfer is still running. The function block signals a successfully completion of the operation by

setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps FALSE and the
output ERROR is set to an appropriate error code according Table 2.

5.9 Function Block MODBUS_READ_INPUT_REGS

The function block MODBUS_READ_INPUT_REGS reads multiple input registers from a Modbus
slave device (e.g. analog inputs).
Modbus Function Code: 044

Prototype of the Function Block

| MODBUS_READ INPUT_REGS
|

I
I
HMODBUS ---|MODBUS_ HANDLE
USINT ---|SLAVE_ADDR
UINT --—|REG_START_ ADDR
UINT --—|REG_COUNT
POINTER —-—-—|DATA_BUFFER
| |
BOOL --—|ENABLE CONFIRM|--- BOOL
| ERROR|--- USINT
| ERRORINFO|--- DINT
| |
e e T et +

Meaning of Operands

MODBUS_HANDLE

SLAVE_ADDR
REG_START_ADDR
REG_COUNT
DATA_BUFFER
ENABLE

CONFIRM

ERROR
ERRORINFO

Handle of the communication instance to use; this handle has to be
requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

Slave address of the remote node (see section 2.2)
Address of the first 16-bit input register to read
Number of 16-bit input registers to read

Address of an object (single variable or array) for receiving the register
data to read (see section 4.5)

Input for enabling or disabling the FB (see section 5.1)

Output for ready signaling by the FB (see section 5.1)

Execution result of the FB; possible error codes are defined in Table 2
Additionally error information; possible codes are defined in Table 3

© SYSTEC electronic GmbH 2016

L-1829-01 27

SYS TEC specific Modbus Function Block Library for OpenPCS

Description

This function block reads multiple input registers from a Modbus slave device (e.g. analog inputs). The
required handle for parameter MODBUS_HANDLE has to be created by using the function block
MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter SLAVE_ADDR is
described in section 2.2. The pointer DATA BUFFER addresses a data object which acts as receive
buffer for the requested data (see section 4.5 for details about representation of PLC variables on
Modbus).

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the reading
request is still running. The function block signals a successfully completion of the read operation by

setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps FALSE and the
output ERROR is set to an appropriate error code according Table 2.

5.10 Function Block MODBUS_READ_DISCR_INPUTS

The function block MODBUS_READ_DISCR_INPUTS reads multiple discrete input registers from a
Modbus slave device (e.qg. digital inputs).

Modbus Function Code: 024

Prototype of the Function Block

| MODBUS READ DISCR_INPUTS
|

|
|
HMODBUS —--—|MODBUS_HANDLE
USINT ---|SLAVE_ADDR
UINT --—-|REG_START ADDR
UINT --—|REG_COUNT
POINTER —-—-—|DATA_BUFFER
| |
BOOL ---|ENABLE CONFIRM|--- BOOL
| ERROR|--- USINT
| ERRORINFO|--- DINT
| \
e LD E DL e D e L e P +
Meaning of Operands
MODBUS_HANDLE Handle of the communication instance to use; this handle has to be
requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).
SLAVE_ADDR Slave address of the remote node (see section 2.2)
REG_START_ADDR Address of the first 1-bit discrete input register to read
REG_COUNT Number of 1-bit discrete input registers to read
DATA BUFFER Address of an object (single variable or array) for receiving the register
data to read (see section 4.5)
ENABLE Input for enabling or disabling the FB (see section 5.1)
CONFIRM Output for ready signaling by the FB (see section 5.1)
ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information; possible codes are defined in Table 3

© SYSTEC electronic GmbH 2016 L-1829-01 28

SYS TEC specific Modbus Function Block Library for OpenPCS

Description

This function block reads discrete input registers from a Modbus slave device (e.g. digital inputs). The
required handle for parameter MODBUS_HANDLE has to be created by using the function block
MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter SLAVE_ADDR is
described in section 2.2. The pointer DATA_BUFFER addresses a data object which acts as receive
buffer for the requested data (see section 4.5 for details about representation of PLC variables on
Modbus).

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the reading
request is still running. The function block signals a successfully completion of the read operation by

setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps FALSE and the
output ERROR is set to an appropriate error code according Table 2.

5.11 Function Block MODBUS_READ_COILS

The function block MODBUS_READ_COILS reads multiple coils from a Modbus slave device (e.g.
read back digital outputs).

Modbus Function Code: 01y

Prototype of the Function Block

[MODBUS_READ COILS

|
|
HMODBUS —---|MODBUS HANDLE
USINT ---|SLAVE_ADDR
UINT --—-|REG_START ADDR
UINT --—|REG_COUNT
POINTER —-—-—|DATA_BUFFER
| |
BOOL ---|ENABLE CONFIRM|--- BOOL
| ERROR|--- USINT
| ERRORINFO|--- DINT
| |
e LD E DL e D e L e P +
Meaning of Operands
MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)

REG_START_ADDR Address of the first 1-bit coil to read

REG_COUNT Number of 1-bit coil registers to read

DATA BUFFER Address of an object (single variable or array) for receiving the register
data to read (see section 4.5)

ENABLE Input for enabling or disabling the FB (see section 5.1)

CONFIRM Output for ready signaling by the FB (see section 5.1)

ERROR Execution result of the FB; possible error codes are defined in Table 2

ERRORINFO Additionally error information; possible codes are defined in Table 3

© SYSTEC electronic GmbH 2016 L-1829-01 29

SYS TEC specific Modbus Function Block Library for OpenPCS

Description

This function reads multiple coils from a Modbus slave device (e.g. read back digital outputs). The
required handle for parameter MODBUS_HANDLE has to be created by using the function block
MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter SLAVE_ADDR is
described in section 2.2. The pointer DATA_BUFFER addresses a data object which acts as receive
buffer for the requested data (see section 4.5 for details about representation of PLC variables on
Modbus).

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the reading
request is still running. The function block signals a successfully completion of the read operation by

setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps FALSE and the
output ERROR is set to an appropriate error code according Table 2.

5.12 Function Block MODBUS_WRITE_SINGLE_COIL

The function block MODBUS_WRITE_SINGLE_COIL writes a single coil to a Modbus slave device
(e.g. digital output).

Modbus Function Code: 054

Prototype of the Function Block

| MODBUS WRITE SINGLE COIL
|

|
|
HMODBUS —---|MODBUS HANDLE |
USINT ---|SLAVE_ADDR |
UINT --—-|REG_ADDR |
BOOL —-——|DATA |
| |
BOOL --- | ENABLE CONFIRM|--- BOOL
| ERROR|--- USINT
| ERRORINFO|--- DINT
| |
e LD E DL e D e L e P +
Meaning of Operands
MODBUS_HANDLE Handle of the communication instance to use; this handle has to be

requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

SLAVE_ADDR Slave address of the remote node (see section 2.2)

REG_ADDR Address of the 1-bit coil to write

DATA Register data to send

ENABLE Input for enabling or disabling the FB (see section 5.1)

CONFIRM Output for ready signaling by the FB (see section 5.1)

ERROR Execution result of the FB; possible error codes are defined in Table 2
ERRORINFO Additionally error information; possible codes are defined in Table 3

© SYSTEC electronic GmbH 2016 L-1829-01 30

SYS TEC specific Modbus Function Block Library for OpenPCS

Description

This function block writes a single coil to a Modbus slave device (e.g. digital output). The required
handle for parameter MODBUS_HANDLE has to be created by using the function block
MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter SLAVE_ADDR is
described in section 2.2. The input DATA contains the register data to send.

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the
transmission request is still running. The function block signals a successfully completion of the write

operation by setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps
FALSE and the output ERROR is set to an appropriate error code according Table 2.

5.13 Function Block MODBUS_WRITE_MULTI_COILS

The function block MODBUS_WRITE_MULTI_COILS writes multiple coils to a Modbus slave device
(e.g. digital outputs).

Modbus Function Code: OF4

Prototype of the Function Block

| MODBUS WRITE MULTI COILS
I

|
\
HMODBUS —---|MODBUS HANDLE
USINT -—--|SLAVE ADDR
UINT --—|REG_START ADDR
UINT --—|REG_COUNT
POINTER —-—-—|DATA_BUFFER
| I
BOOL --—|ENABLE CONFIRM|--- BOOL
| ERROR|--- USINT
| ERRORINFO|--- DINT
| I
e e T et +

Meaning of Operands

MODBUS_HANDLE

SLAVE_ADDR
REG_START_ADDR
REG_COUNT
DATA_BUFFER
ENABLE

CONFIRM

ERROR
ERRORINFO

Handle of the communication instance to use; this handle has to be
requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

Slave address of the remote node (see section 2.2)
Address of the first 1-bit coil to write
Number of 1-bit coil registers to write

Address of an object (single variable or array) which contains the register
data to send (see section 4.5)

Input for enabling or disabling the FB (see section 5.1)

Output for ready signaling by the FB (see section 5.1)

Execution result of the FB; possible error codes are defined in Table 2
Additionally error information; possible codes are defined in Table 3

© SYSTEC electronic GmbH 2016

L-1829-01 31

SYS TEC specific Modbus Function Block Library for OpenPCS

Description

This function block writes multiple coils to a Modbus slave device (e.g. digital outputs). The required
handle for parameter MODBUS_HANDLE has to be created by using the function block
MODBUS_OPEN_INSTANCE (see section 5.2). The usage of the input parameter SLAVE_ADDR is
described in section 2.2. The pointer DATA_BUFFER addresses a data object which contains the
register data to send (see section 4.5 for details about representation of PLC variables on Modbus).

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the
transmission request is still running. The function block signals a successfully completion of the write
operation by setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps
FALSE and the output ERROR is set to an appropriate error code according Table 2.

5.14 Function Block MODBUS_RAW_PDU_REQUEST

The function block MODBUS_RAW_PDU_REQUEST exchanges raw PDU telegrams with a Modbus

slave device.

Prototype of the Function Block

HMODBUS
USINT
USINT
POINTER
POINTER

BOOL

Meaning of Operands

MODBUS_HANDLE

SLAVE_ADDR
FNCT_CODE

PAYLOAD_IN
PAYLOAD_OUT

PAYLOAD_OUT_LEN

ENABLE
CONFIRM
ERROR
ERRORINFO

--—|ENABLE

MODBUS_RAW PDU REQUEST

|

|
---|MODBUS_HANDLE

[

|

--- | SLAVE_ADDR
---|FNCT_CODE
---|PAYLOAD IN
--—|PAYLOAD OUT PAYLOAD OUT LEN|--- UINT
|
CONFIRM|--- BOOL
ERROR|--- USINT
ERRORINFO|--- DINT

Handle of the communication instance to use; this handle has to be
requested by calling MODBUS_OPEN_INSTANCE (see section 5.2).

Slave address of the remote node (see section 2.2)
Modbus Function Code for the requested operation

Address of a byte array which contains the payload data to send
Address of a byte array for receiving the payload data to read

Number of bytes valid in receive buffer addressed by PAYLOAD_OUT

Input for enabling or disabling the FB (see section 5.1)

Output for ready signaling by the FB (see section 5.1)

Execution result of the FB; possible error codes are defined in Table 2
Additionally error information; possible codes are defined in Table 3

© SYSTEC electronic GmbH 2016

L-1829-01 32

SYS TEC specific Modbus Function Block Library for OpenPCS

Description

This function block exchanges raw PDU telegrams with a Modbus slave device. That allows using any
functions that are not supported by this library. The required handle for parameter MODBUS_ HANDLE
has to be created by using the function block MODBUS_OPEN_INSTANCE (see section 5.2). The
usage of the input parameter SLAVE_ADDR is described in section 2.2. The pointer PAYLOAD_IN
addresses a byte array which contains the payload data to send. Equivalently the pointer

PAYLOAD_ OUT addresses a byte array which acts as receive buffer for the requested data.

For the both parameters PAYLOAD _IN and PAYLOAD_OUT only pointers to ARRAY of BYTE, USINT
and SINT are accepted. The PLC firmware doesn't convert any of this data. That means that the PLC
programmer itself is responsible for the correct data format.

The Transmit PDU is build from Function Code and payload data addressed by parameters
PAYLOAD_IN. The Function Code is used as first byte of PDU, followed by the payload data (see
Figure 2).

The first byte of the Receive PDU specifies the length of following payload data in bytes. This length
information is set on output PAYLOAD_ OUT_LEN as well as kept as first byte of the receive data
block, stored in buffer addressed by parameter PAYLOAD_OUT (see Figure 2).

MODBUS_RAW_PDU_REQUEST

[Fc FNCT_CODE — ——— PAYLOAD_OUT_LEN Len
[11 [22 [33 [44— PavLOAD_IN — PAYLOAD_OUT cc|]on]ee]Fr]

Transmitpou [FC [11 [22]33] 44]

Receive PDU |Len] cc| oo] EE | FF |

Figure 2: Structure of Transmit and Receive Raw PDU

As long as output CONFIRM remains FALSE and no error code is set on output ERROR, the
requested operation is still running. The function block signals a successfully completion of the
operation by setting of output CONFIRM to TRUE. In case of an error the output CONFIRM keeps
FALSE and the output ERROR is set to an appropriate error code according Table 2.

© SYSTEC electronic GmbH 2016 L-1829-01 33

SYS TEC specific Modbus Function Block Library for OpenPCS

6 Index

Data Format 15
Error Codes 10
Error Info Codes 10
Function blocks, overview
MODBUS _Xxx 7
HMODBUS 12
Modbus Basics
Master 8
Slave 9
MODBUS_CLOSE_INSTANCE 20
MODBUS_DATA POINT 13
MODBUS_DATA POINT_VAR_REF 14
MODBUS_DEV_TYPE 12
MODBUS_OBJ_TYPE 13

MODBUS_OPEN_INSTANCE 17
MODBUS_ RAW_PDU_REQUEST 32
MODBUS_READ_COILS 29
MODBUS_READ_DISCR_INPUTS 28
MODBUS_READ_INPUT_REGS 27
MODBUS_READ_REGS 23
MODBUS_READ_WRITE_REGS 26
MODBUS_REGISTER_VAR_LIST 21
MODBUS_WRITE_MULTI_COILS 31
MODBUS_WRITE_MULTI_REGS 25
MODBUS_WRITE_SINGLE_COIL 30
MODBUS_WRITE_SINGLE_REGS 24
Synchronization FBs/PLC 16

© SYSTEC electronic GmbH 2016

L-1829-01 34

SYS TEC specific Modbus Function Block Library for OpenPCS

Appendix A: Mapping PLC Variables to Modbus Registers

Table 5: Mapping PLC Variables to Modbus Registers

Reg[n+(a*2)+1]

BOOL Reg[n] = Var
i S
SINT g - :
USINT Reg[n+7] = Var.’7
Reg[n] = Var.0
WORD _
INT Reg[n+1] = Var.l1l
UINT Reg[n+15] = Var.1l5
DHORD Req [o+1] - var.1
DINT g :
UDINT Reg[n+31] = Var.31
. . Reg[n] = Var([0]
1 bit register BOOL[0. .a] o
Reg[nta] = Var([a]
Reg[n] = Var([0].0
BYTE[O..a] _
SINT[O..a] Reg[n+1] = Var[0].1
USINT[O..a] Reg[n+(a*8)+7] = varfal.7
Reg[n] = Var([0].0
WORD[O..a] B
INT[O..a] Reg[n+1] = Var([0].1
UINT[O..a] Reg[n+(a*16)+15] := Var[a].15
O N S
DINT[0..a] g :
UDINT(0..a] Reg[n+(a*32)+31] := varla].31l
WORD
INT Reg[n] = Var
UINT
g?g?D Reg[n] = Var.LowWord
UDINT Reg[n+1] = Var.HighWord
Reg[n] = Var([0]
. . WORD[O0. .a] _
16 bit register INT[O..a] Reg[n+1] = Var([1l]
UINT[O. .a] Reg[n+a] = Var[a]
Reg[n] = Var[0] .LowWord
DWORDI[O0..a] Reg[n+1] = Var[0] .HighWord
DINT[O..a]
UDINTI[O..a] Reg[n+(a*2)] = Var([a] .LowWord

Var[a] .HighWord

© SYSTEC electronic GmbH 2016

L-1829-01

35

SYS TEC specific Modbus Function Block Library for OpenPCS

Document: SYS TEC Specific Modbus Function Block Library for OpenPCS
Document number: L-1829-01, February 2016

Do you have any suggestions for improving this manual?

Have you discovered any errors in this manual? Page

Sent from:
Customer number:

Name:

Company:

Address:

Send to:
SYS TEC electronic GmbH
Am Windrad 2
D — 08468 Heinsdorfergrund
GERMANY

Fax: +49 (0) 37 65/ 38600-4100
Email: info@systec-electronic.com

© SYSTEC electronic GmbH 2016 L-1829-01 36

mailto:info@systec-electronic.com

SYS TEC specific Modbus Function Block Library for OpenPCS

© SYSTEC electronic GmbH 2016 L-1829-01

37

